CÁLCULO
EN FENÓMENOS
NATURALES
Y PROCESOS
SOCIALES
CÁLCULO
EN FENÓMENOS NATURALES
Y PROCESOS SOCIALES
Secretaría de Educación Pública
José Ángel Córdova Villalobos

Subsecretaría de Educación Media Superior
Miguel Ángel Martínez Espinosa

Dirección General del Bachillerato
Carlos Santos Ancira

Autor
Osman Villanueva García

Asesoría académica
Demetrio Garmendia Guerrero

Apoyo técnico pedagógico
Araceli Hernández Cervantes

Revisión pedagógica
Patricia Pozos Bravo

Revisión técnico-pedagógica de la Dirección General del Bachillerato
Cuautli Suárez Jiménez

Coordinación y servicios editoriales
Edere S.A. de C.V.
José Ángel Quintanilla D’Acosta
Mónica Lobatón Díaz

Diseño y diagramación
Visión Tipográfica Editores, S.A. de C.V.

Material fotográfico e iconografía
Shutterstock Images, LLC/
Martín Córdova Salinas
Isabel Gómez Caravantes

Argentina 28, Centro,
06020, México, D. F.

ISBN

Impreso en México
Tabla de contenido

Presentación general .. 8
Cómo utilizar este material 11
Tu plan de trabajo .. 14
¿Con qué saberes cuento? .. 17

UNIDAD 1 EL MOVIMIENTO COMO RAZÓN DE CAMBIO Y LA DERIVADA

¿Qué voy a aprender y cómo? 21
Movimiento, cambio y límite 24
 La dependencia del movimiento en los fenómenos naturales
 y los procesos sociales .. 26
La caída libre de un proyectil, un excelente punto de partida .. 32
 Método de los incrementos 38
Autoevaluación ... 42
Función, un concepto matemático imprescindible para comprender nuestro entorno ... 45
 La función lineal .. 47
 La función cuadrática en la variable x 50
 Las funciones trigonométricas (principales y secundarias) .. 50
 La función valor absoluto 53
 La función escalonada 54
 La función raíz cuadrada 54
 La función exponencial y logaritmo natural 55
Construcción de la recta tangente a una curva, razón instantánea de cambio y la derivada de una función 57
 Descripción de la pendiente de la recta tangente a una curva, la derivada .. 58
 Relación entre continuidad y diferenciabilidad de una función ... 63
Reglas básicas de derivación y razones de cambio 71
 Regla de la función constante 72
 Regla de la función potencia 74
 Regla del múltiplo constante de una función 75
 Regla de la suma y diferencia de funciones 77
 Derivadas de las funciones seno y coseno 78
 Regla del producto de funciones 79
Tabla de contenido

- Regla del cociente de funciones ... 81
- Derivadas de las funciones trigonométricas ... 82
- Regla de la cadena o derivada de una función compuesta 83

Comportamiento de funciones, puntos críticos, máximos y mínimos 90
- Problemas referentes al comportamiento de funciones y el uso de la derivada 91
- Definición de conceptos referentes al comportamiento de funciones y uso de la derivada ... 96

- Problemas de optimización y aplicaciones de la derivada 101
- Aplicaciones del cálculo diferencial en fenómenos naturales y procesos sociales ... 106

UNIDAD 2 LA DERIVADA EN LA EXPLICACIÓN DE LOS FENÓMEMOS NATURALES Y PROCESOS SOCIALES

- ¿Qué voy a aprender y cómo? ... 109
- Dinámica poblacional, un fenómeno que incita al cálculo 113
- Historia y nacimiento del cálculo .. 117
- Antiderivada e integral indefinida .. 119
 - La distancia recorrida por un móvil con velocidad no constante 119
 - Antiderivadas ... 120
- Reglas básicas de integración ... 124
- El área bajo la curva y el concepto de integral definida 128
 - Descubrimiento del número pi ... 131
 - Origen de la integral definida .. 135
 - El concepto de integral definida a partir del área bajo la curva 138
 - Propiedades de las integrales definidas .. 146
- El teorema fundamental del cálculo (conexión de las operaciones inversas) ... 148
- Integración por sustitución ... 154
- Regla general de la potencia para la integración 159
- Valor promedio y área comprendida entre dos curvas 164
- Aplicaciones de la integración ... 168
- Cálculo integral en fenómenos naturales y procesos sociales 177
Tabla de contenido

¿Ya estoy preparado(a)? ... 179

Apéndices
 Apéndice 1. Clave de respuestas ... 187
 Apéndice 2. Mi ruta de aprendizaje 269
 Apéndice 3. La consulta de fuentes de información en Internet . 270
 Apéndice 4. Las nociones matemáticas y el infinito 273

Fuentes consultadas ... 275
Presentación general

Este libro fue elaborado para ayudarte a estudiar el módulo *Cálculo en fenómenos naturales y procesos sociales* del plan de estudios de la Preparatoria Abierta que ha establecido la Secretaría de Educación Pública (SEP), pero también está diseñado para utilizarse en otros sistemas educativos de la modalidad no escolarizada y mixta. Sabiendo que trabajarás de manera independiente la mayor parte del tiempo este libro te brinda orientaciones muy precisas sobre lo que tienes que hacer y te proporciona la información que requieres para aprender.

Los estudios que iniciarás se sustentan en un enfoque de educación por competencias; es decir, que adquirirás nuevos conocimientos, habilidades, actitudes y valores; recuperarás otros para transformarlos en capacidades para desempeñarte de forma eficaz y eficiente en diferentes ámbitos de tu vida personal, profesional y laboral.

Para facilitar tu estudio es importante que tengas muy claro qué implica aprender competencias, cómo se recomienda estudiar en una modalidad no escolarizada y cómo utilizar este libro.

¿Qué es una competencia?

En el contexto educativo, hablar de “competencias” no es hacer referencia a una contienda entre dos o más personas por alcanzar determinado fin o a una justa deportiva. El Acuerdo Secretarial 442 de la Secretaría de Educación Pública define competencia como la integración de habilidades, conocimientos y actitudes en un contexto específico.

La meta de la formación como bachiller es que tú desarrolles las competencias que han sido definidas por la SEP como perfil de egreso para la Educación Media Superior. No se pretende que sólo memorices información o demuestres habilidades aisladas. Lo que se busca es que logres aplicar de manera efectiva tus conocimientos, habilidades, actitudes en situaciones o problemas concretos.

La cantidad de información de la que se dispone en la época actual provoca que busques formas diferentes de aprender pues memorizar contenidos resulta insuficiente. Ahora se requiere que aprendas a analizar la información y te apropies de los conocimientos haciéndolos útiles para ti y tu entorno.

Por eso cuando estudies, no orientes tus esfuerzos a memorizar sino a identificar los conceptos más importantes, a analizarlos con detenimiento para comprenderlos y reflexionar sobre cómo se relacionan con otros términos. Busca información adicional. Pero no te quedes allí aprende cómo aplicar los saberes en situaciones y contextos propuestos en las actividades. Hazlo mismo con las habilidades, las actitudes y los valores. De manera concreta, es recomendable que para aprender sigas estos pasos:
En este libro, además de leer y estudiar textos y procedimientos, encontrarás problemas a resolver, casos para analizar y proyectos a ejecutar. Éstos te ofrecerán evidencias sobre las capacidades que desarrollarás y podrás valorar tus avances.

Para acreditar el módulo Cálculo en fenómenos naturales y procesos sociales es básico que demuestres que eres capaz de analizar y resolver situaciones, problemas y casos que te exigen la unión de conocimientos, habilidades, actitudes y valores.

Estudiar en una modalidad no escolarizada

Una modalidad educativa no escolarizada como la que estás cursando tiene como ventaja una gran flexibilidad. Tú decides a qué hora y dónde estudias, y qué tan rápido avanzas. Puedes adecuar tus horarios a otras responsabilidades cotidianas que tienes que cubrir como el trabajo, la familia o cualquier proyecto personal.

Pero en esta modalidad educativa se requiere que lleves a cabo las siguientes acciones:

- Seas capaz de dirigir tu proceso de aprendizaje. Es decir que:
 - Definas tus metas personales de aprendizaje, considerando el propósito formativo de los módulos.
 - Asigne tiempo para el estudio y procures contar con todos los recursos necesarios en un espacio apropiado.
 - Regule tu ritmo de avance.
 - Aproveches los materiales que la SEP ha preparado para apoyarte.
 - Utilices otros recursos que puedan ayudarte a profundizar tu aprendizaje.
 - Identifiques cuando enfrentas dificultades para aprender y busques ayuda para superarlas.
Presentación general

- Te involucres de manera activa en tu aprendizaje. Es decir que:
 - Leas para comprender las ideas que se te presentan y construyas significados.
 - Recurras a tu experiencia como punto de partida para aprender.
 - Realices las actividades propuestas y revises los productos que generes.
 - Reconozcas tus fortalezas y debilidades como estudiante.
 - Selecciones las técnicas de estudio que mejor funcionen para ti.
 - Emprendas acciones para enriquecer tus capacidades para aprender y potenciar tus limitaciones.

- Asumas una postura crítica y propositiva. Es decir que:
 - Analices de manera crítica los conceptos que se presentan.
 - Indagues sobre los temas que estudias y explores distintos planteamientos en torno a ellos.
 - Plantees alternativas de solución a los problemas.
 - Explores formas diversas de enfrentar las situaciones.
 - Adoptes una postura personal en los distintos debates.

- Seas honesto y te comprometas contigo mismo. Es decir que:
 - Realices tú mismo las actividades.
 - Consultes las respuestas después de haberlas llevado a cabo.
 - Busques apoyo, si lo requieres en los Centros de Servicio de Preparatoria Abierta.
 - Destines el tiempo de estudio necesario para lograr los resultados de aprendizaje.

- Evalúes tus logros de manera constante. Es decir que:
 - Analices tu ejecución de las actividades y los productos que generes utilizando la retroalimentación que se ofrece en el libro.
 - Identifiques los aprendizajes que alcances utilizando los referentes que te ofrece el material.
 - Reconozcas las limitaciones en tu aprendizaje y emprendas acciones para superarlas.
 - Aproveches tus errores como una oportunidad para aprender.

- Reflexiones sobre tu propio proceso de aprendizaje. Es decir que:
 - Te preguntas de manera constante: ¿qué estoy haciendo bien?, ¿qué es lo que no me ha funcionado?
 - Realices ajustes en tus estrategias para mejorar tus resultados de aprendizaje.

Como puedes ver, el estudio independiente es una tarea que implica el desarrollo de muchas habilidades que adquirirás y mejorará a medida que avances en tus estudios. El componente principal es que estés comprometido con tu aprendizaje.
Cómo utilizar este material

Este libro te brinda los elementos fundamentales para apoyarte en tu aprendizaje. Lo constituyen diversas secciones en las que se te proponen los pasos que es recomendable que sigas para estudiar.

1. En la sección *Tu plan de trabajo* encontrarás el propósito general del módulo, las competencias que deberás desarrollar y una explicación general de las unidades. Es importante que sea lo primero que leas del libro para definir tu plan personal de trabajo.

2. En la sección ¿Con qué saberes cuento? se presenta un examen con el que puedes valorar si posees los saberes requeridos para estudiar con éxito el módulo. Es oportuno que identifiques desde el inicio si necesitas aprender o fortalecer algún conocimiento o habilidad antes de comenzar.

3. Estudies las unidades en el orden sugerido para su abordaje. Cada una de ellas contiene actividades de aprendizaje e información necesaria para realizarlas; sin embargo se te sugerirá de manera

Glosario

Resalta aquellos términos que pueden ser de difícil comprensión y cuya definición encontrarás en el margen correspondiente. Se indican con letra roja.

Límite: en matemáticas un límite es una magnitud a la que se acercan progresivamente los términos de una secuencia infinita de magnitudes. Un límite matemático, por lo tanto, expresa la tendencia de una función o de una sucesión mientras sus parámetros se aproximan a un cierto valor. Una definición informal del límite matemático indica que el límite de una función f(x) es T cuando x tiende a s, siempre que se pueda hacer para cada epsilon un δ-entorno a la izquierda de s. El límite se toma a ser el valor que se obtiene al reemplazar s por cualquier número real.

Gestión del aprendizaje

Ofrece información que te orienta para alcanzar tus metas de estudio. En ellas puedes tener explicaciones de carácter teórico, sobre estrategias de aprendizaje y sobre técnicas de estudio.

Calcule en fenómenos naturales y procesos sociales

Recuerda verificar tus respuestas en el Apéndice 1.
Cómo utilizar este material

Continúa que consultes fuentes adicionales a este libro.

4. Para que puedas evaluar los productos que realices está el primer apéndice del libro. En él encontrarás la clave de respuestas a las actividades. No dejes de consultarlos después de haberlas realizado.

5. También encontrarás una sección de evaluación final del módulo, ¿Ya estoy preparado(a)? Su resolución te permitirá valorar si ya lograste los aprendizajes propuestos y si estás en condiciones de presentar tu examen para acreditar el módulo en la SEP. Es muy importante que califiques honestamente tus respuestas y una vez que tengas los resultados pienses sobre lo que sí te funcionó y lo que no, de las acciones que aplicaste para aprender en cada tema y de esa forma adoptes mejoras para tu proceso de aprendizaje.

Con frecuencia se te recomienda buscar información en Internet, o acceder a algunas páginas electró-
A lo largo del texto encontrarás una serie de elementos gráficos que te ayudarán en la gestión de tu aprendizaje. Te señalamos cuáles son y qué significan.

Para saber más Brinda información interesante, curiosa o novedosa sobre el tema que se está trabajando y que no es esencial sino complementaria.
En la naturaleza como en la sociedad nada es estático, todo está en constante transformación. Cambia el clima, el tiempo, la energía, el ecosistema, las clases sociales y la sociedad en su conjunto. Pero, ¿cómo predecir el comportamiento de ese todo?, ¿cómo explicarlo? Indagando cómo ocurren las variaciones y aplicando las matemáticas.

Cálculo en fenómenos naturales y procesos sociales se ubica en el cuarto nivel del mapa curricular cuyo fin es que establezcas relaciones entre sujetos, objetos y conceptos con la finalidad de analizar y explicar cambios que se presentan en el mundo natural y en el ámbito social. Por ello, estudiarás como en los otros modu-
los de este nivel los fenómenos naturales y los procesos sociales, los principios que los rigen y su aplicación a través de la tecnología.

El propósito de estudio de este módulo es que utilices el cálculo infinitesimal, con apoyo de teorías y modelos matemáticos como las funciones y la derivación, para analizar, describir y explicar los comportamientos de los fenómenos naturales y los procesos sociales propios de tu contexto como estudiante.

Para lograr el propósito anterior es importante que continúes desarrollando competencias diversas tales como:

- Construir e interpretar modelos matemáticos mediante la aplicación de procedimientos aritméticos, algebraicos, geométricos y variacionales para comprender y analizar situaciones reales, hipotéticas y formales.
- Explicar e interpretar los resultados obtenidos mediante procedimientos matemáticos y contrastarlos con modelos establecidos o situaciones reales.
- Analizar las relaciones entre dos o más variables de un proceso social o natural para determinar o estimar su comportamiento.
- Establecer la interrelación entre la ciencia, la tecnología, la sociedad y el ambiente en contextos históricos y sociales específicos.
- Identificar problemas, formular preguntas de carácter científico y plantear las hipótesis necesarias para responderlas.
- Relacionar las expresiones simbólicas de un fenómeno de la naturaleza y los rasgos observables a simple vista o mediante instrumentos o modelos científicos.
- Diseñar prototipos o modelos para resolver problemas, satisfacer necesidades o demostrar principios científicos, hechos o fenómenos relacionados con las ciencias experimentales.
- Establecer la relación entre las dimensiones política, económica, cultural y geográfica de un acontecimiento.

Tus herramientas iniciales para trabajar son aquellas que ya tienes porque las adquiriste en la vida, la escuela y el estudio de los módulos anteriores a éste. Posees las bases, los instrumentos y los métodos para enfrentarte a los saberes de *Cálculo en fenómenos naturales y procesos sociales*.
Este módulo se compone de dos unidades. En la primera, *El movimiento como razón de cambio y la derivada*, analizarás los comportamientos de los fenómenos naturales y los procesos sociales propios de tu entorno, mientras que en la segunda, *La derivada en la explicación de los fenómenos naturales y procesos sociales*, explicarás el comportamiento de éstos por medio de la aplicación de la derivada, la diferencial, la antiderivada, y el teorema fundamental de cálculo, para realizar predicciones de dichos fenómenos y procesos ocurridos en lapsos definidos e identificar su impacto en el entorno.

El módulo de *Cálculo en fenómenos naturales y procesos sociales* está diseñado para ser completado en un total de 60 horas; como ya te habrás dado cuenta, la asignación del tiempo depende de tu disponibilidad por las actividades cotidianas que lleves a cabo, así como de las habilidades que ya hayas desarrollado. Te recomendamos que organices tu tiempo para dedicar dos horas diarias de lunes a viernes, con el fin de terminarlo en alrededor de 6 semanas.

Instrumentos de evaluación

Por último, antes de dar comienzo al estudio del módulo, es importante resaltar la importancia que tiene la tarea de realizar una evaluación continua de tu proceso de enseñanza-aprendizaje para la determinación del grado de desarrollo que durante el estudio del módulo hayas logrado.

Tablas de cotejo

En comparación con otros instrumentos las tablas de cotejo presentan menos complejidad. Su objetivo es determinar la presencia de un desempeño y para ello se requiere identificar las categorías a evaluar y los desempeños que conforman a cada una de ellas. Para valorar su presencia, es suficiente con colocar una línea para cada indicador o desempeño y escribir sobre ella una marca para identificar su presencia.

Escalas de clasificación

Una escala de clasificación identifica si se presenta o no determinado atributo, además, proporciona un continuo con X opciones para ponderar la frecuencia en que éste se presenta, donde cada opción tiene un valor específico.
Rúbricas

Las rúbricas son instrumentos que permiten describir el grado de desempeño que muestra una persona en el desarrollo de una actividad o problema. Las rúbricas son guías o escalas de evaluación donde se establecen niveles progresivos de dominio o pericia relativos al desempeño que una persona muestra respecto de un proceso o producción determinada. También es posible decir que las rúbricas integran un amplio rango de criterios que cualifican de modo progresivo el tránsito de un desempeño incipiente o novato al grado del experto.

www.dgb.sep.gob.mx/portada/lineamientos-eval-aprendizaje.pdf
Por la forma como has trabajado en los módulos que has cursado te habrás dado cuenta que posees saberes que te permiten avanzar en la construcción de nuevos conocimientos, pero también habrás observado que si no tienes los elementos necesarios para comenzar un nuevo módulo su estudio se dificulta. Comprueba que ya desarrollaste las competencias necesarias para comenzar con este módulo respondiendo la siguiente evaluación en tu cuaderno. Resuélvela con base en tus conocimientos y tu lectura analítica.

I) Puntograma matemático

1. La siguiente tabla te servirá para trazar una figura geométrica. La información de la columna Eje x te servirá para determinar la coordenada de dicho eje, la columna Eje y te dará la coordenada y. Anota ambos resultados en donde se te pide dentro de la columna “Coordenadas”. Finalmente,localiza dichas coordenadas en el plano cartesiano y al final une con líneas los puntos en el siguiente orden: A, B, C, D, E. ¿Qué figura obtienes?

<table>
<thead>
<tr>
<th>Eje x</th>
<th>Eje y</th>
<th>Coordenadas (x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((3^0 - x^0)) ([\frac{15}{2} - 11 \frac{3}{8} \frac{2}{3}]) - 6 =</td>
<td>Si con dos dólares compras (\frac{10}{13}) de libras de piñón, ¿cuánto piñón compras con 13 dólares?</td>
<td>A (__, __)</td>
</tr>
<tr>
<td></td>
<td>Si los triángulos son semejantes, ¿cuál es el valor de “x”? (considera el signo contrario en tu resultado.)</td>
<td>B (__, __)</td>
</tr>
<tr>
<td>7/2</td>
<td>¿Cuál es el 30% de 10 euros?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 jóvenes comen cierto número de pizzas en 27 minutos. Si ahora se reúnen 30 jóvenes con la misma necesidad de saciar su apetito, ¿en cuánto tiempo se devoran el mismo número de pizzas?</td>
<td>C (__, __)</td>
</tr>
<tr>
<td></td>
<td>En apoya al “No a la violencia intrafamiliar” se repartieron equitativamente (\frac{8}{7}) metros de listón a 30 personas, ¿cuántos metros de listón le tocó a cada persona? (Multiplica por 10 el resultado.)</td>
<td></td>
</tr>
<tr>
<td>([\frac{1}{2} + \frac{1}{6}] - (\frac{8}{3} - \frac{19}{3})) =</td>
<td>Diecisésis veces la probabilidad de obtener un “Águila” en un volado.</td>
<td>D (__, __)</td>
</tr>
<tr>
<td></td>
<td>¿Cuál es la probabilidad de obtener un “séis” al tirar un dado? (Resta (\frac{7}{6}) al resultado.)</td>
<td>E (__, __)</td>
</tr>
</tbody>
</table>

Arturo tiene \(\frac{3}{2}\) de la edad de su hijo, que tiene 32 años. (Divide el resultado entre -8.)
¿Con qué saberes cuento?

2. De la figura obtenida en el puntograma anterior, el segmento DE se intersecta en un punto “P” con el segmento AB. Con esta información realiza lo que se te pide:
 a) ¿Cuánto mide el segmento EP? (Sugerencia: usa el teorema de Pitágoras).
 b) Calcula el área del cuadrado PBCD. (Sugerencia: usa el teorema de Pitágoras y la fórmula Área = lado x lado).
 c) Muestra que el triángulo AEP es semejante al triángulo PBD. (Sugerencia: utiliza las propiedades de los ángulos congruentes).

II) Ecuaciones lineales

1. Si se sabe que el agua se congela a 0º Celsius, (32º Fahrenheit) y hierve a 100º C (212º F), ¿cuál de las siguientes ecuaciones lineales expresa la relación entre la temperatura en grados Celsius y grados Fahrenheit?
 a) \(F = \frac{9}{5}C + 32 \)
 b) \(C = \frac{9}{5}F + 32 \)
 c) \(F + 32 = \frac{9}{5}C \)
 d) \(C = -\frac{9}{5}F + 32 \)

2. Un migrante mexicano tiene dos puestos para elegir en una corporación grande en los Estados Unidos de América. En uno de ellos se le paga 12.50 dólares por unidad más una compensación unitaria adicional de 0.75 dólar por unidad producida. En el otro se le paga 9.20 dólares por hora más una compensación unitaria de 1.30 dólares.
 a) Determina las ecuaciones lineales para los salarios por hora, \(S \), en términos de \(x \), el número de unidades producidas por hora, para cada puesto.
 b) Usa un instrumento (software, fórmulas, tablas, etc.) para construir las gráficas de las ecuaciones lineales en un mismo plano cartesiano y encuentra el punto de intersección.
 c) Interpreta el significado del punto de intersección de las gráficas del inciso b). ¿Cómo podrías usar esta información para seleccionar el puesto correcto si el objetivo fuera obtener el salario mejor pagado por hora de trabajo?

Resuelve los siguientes problemas planteando un sistema de dos ecuaciones lineales y haciendo uso del método gráfico y algebraico.
3. Dos soluciones de un ácido, una con 97% y otra con 90%, se mezclan para obtener 21 litros de una solución con 95%. ¿Cuántos litros de cada solución se emplean?
4. Una tripulación se desplaza 28 kilómetros por hora a favor de la corriente y 24 kilómetros en tres horas contra la corriente. Hallar la velocidad del bote en agua tranquila y la velocidad del agua en el río.

III) Relaciones y funciones

1. Un estudiante que recorre diariamente 7 kilómetros para asistir a la universidad recuerda, después de manejar su automóvil algunos minutos, que se le ha olvidado el trabajo final que debe entregar. Manejando más rápido que de costumbre, el estudiante regresa a su casa, recoge el trabajo y de nuevo se dirige hacia la escuela. Dibuja una gráfica posible de la distancia recorrida por el estudiante desde su casa, como función del tiempo.

2. En una conferencia internacional había 112 delegados; 68 hablaban alemán; 80 hablaban francés y 64 italiano. Además 28 delegados hablaban exclusivamente francés, mientras que 45 hablaban alemán y francés; 51 hablaban francés e italiano y 48 hablaban italiano y alemán. Si todos hablaban al menos un idioma: ¿Cuántos hablan los tres idiomas?, ¿cuántos hablan sólo italiano?
 - a) 40 y 13
 - b) 34 y 10
 - c) 44 y 9
 - d) 45 y 8

3. Un proyectil es arrojado verticalmente hacia arriba desde el suelo con una velocidad inicial \(V_0 \) de 78.4 m/seg.
 - a) Gracias a Galileo Galilei se sabe que la distancia recorrida por el móvil en caída libre es siempre la mitad de la gravedad por el tiempo al cuadrado
¿Con qué saberes cuento?

más el valor de la velocidad inicial por el tiempo, más la distancia inicial. Escribe la función distancia, \(d(t) \), que describe el movimiento del proyectil en el tiempo.

b) ¿En qué tiempo choca el proyectil con la superficie terrestre?

c) ¿Cuál es la altura máxima que alcanza el proyectil y en qué tiempo lo hace?

d) Realiza la gráfica la función distancia \(d(t) \) que esquematiza el desplazamiento del proyectil en el tiempo.

4. Los gastos totales de una excursión ascienden a $90 pesos; si no van 3 personas, cada una de las restantes debe pagar un peso más. ¿Cuántas personas forman el grupo y cuánto pagarán cada una?

IV) Problema de movimiento

En 1957 los rusos lanzaron al espacio el primer satélite fabricado por el hombre, el Sputnik 1. Su órbita alrededor de nuestro planeta fue elíptica, siendo el centro de la Tierra un foco de la misma. La altura máxima sobre la superficie terrestre fue, aproximadamente, de 580 millas y la mínima de 30 millas.

a) Suponiendo que el radio de la Tierra mide 4,000 millas, deduce la ecuación de la órbita del Sputnik 1. (no simplifiques el valor de \(b^2 \)).

b) Calcula el valor de \(b \) con precisión de una milla y vuelve a escribir la ecuación de la elipse con este resultado.

c) Realiza la gráfica de la trayectoria del Sputnik 1 (elipse).

Al finalizar esta evaluación diagnóstica revisa tus respuestas con las que se presentan en el Apéndice 1; toma en consideración en qué temas no obtuviste resultados como los que esperabas y repasa esos conocimientos, de tal manera que puedas seguir el estudio de este módulo con seguridad y un aprovechamiento que te apoye a terminar tus estudios de Preparatoria Abierta.
¿Qué voy a aprender y cómo?

La mayoría de los campos del saber humano se valen de técnicas matemáticas para explicar las relaciones causales de los procesos sociales y los diversos fenómenos que ocurren en la naturaleza. Las matemáticas te proporcionan el lenguaje y los conceptos necesarios para estudiar y elaborar un modelo de nuestro entorno, el cual resulta necesario para expresar reglas generales de su comportamiento y para obtener predicciones de validez general. Lo anterior propicia el desarrollo científico y tecnológico y por ende la adquisición y consolidación tanto de conocimiento como del aprendizaje significativo.

El análisis crítico y objetivo de diversos fenómenos naturales y procesos sociales, mediante la aplicación del método de análisis cuantitativo y cualitativo propio de una rama de las matemáticas denominada cálculo, representa el objetivo a priori de este libro.

En todo momento requieres hacer uso de tus conocimientos previos para estudiar y tratar los cuatro problemas históricos que dieron origen al cálculo matemático. Cada uno de tales problemas comprende individualmente la noción del límite, por lo que es posible definir el cálculo matemático a partir de cualquiera de ellos. El primero de los problemas mencionados se muestra en la unidad inicial y hace referencia al concepto de razón de cambio a través del estudio y análisis de la velocidad y aceleración instantánea de un proyectil en caída libre. Su solución contribuyó al origen del concepto de derivada de una función y al denominado cálculo diferencial. La construcción de la recta tangente a una curva y la determinación de los valores máximos y mínimos en situaciones que demandan optimizar recursos representan el segundo y tercer problema que dieron origen al cálculo, por lo que su estudio tiene relación directa con la derivada como concepto fundamental y con la descripción del cálculo diferencial como herramienta de análisis de la naturaleza.
Esta primera unidad, denominada El movimiento como razón de cambio y la derivada, se basa en el estudio y tratado de nuestro entorno a partir de los conceptos de movimiento, cambio y límite. El objetivo central del presente libro consiste en aplicar las habilidades matemáticas para obtener respuestas útiles a problemas reales (es decir, a problemas relacionados con los fenómenos naturales y los procesos sociales), llevándose a cabo a través de la construcción de modelos matemáticos. Por consiguiente, y para aprender a aplicar las habilidades matemáticas en nuestro entorno, es muy importante que tengas una participación activa en las actividades propuestas y descritas en cada una de las secciones.

¿Con qué propósito?
El propósito de esta unidad es analizar de manera crítica y objetiva los comportamientos de los fenómenos naturales y/o procesos sociales propios del entorno mediante la aplicación de los conceptos de razón de cambio, límite, derivada y elaboración de gráficas.

¿Qué saberes trabajaré?
Cuando identificas y aplicas modelos matemáticos para llevar a cabo el análisis de tu entorno, desarrollas conceptos y habilidades matemáticas que dan origen a la herramienta más poderosa de esta disciplina, el cálculo. A partir de tus conocimientos previos en matemáticas y otras áreas, así como del concepto de movimiento como eje rector del presente libro se introduce y desarrolla el concepto de derivada de una función que permite identificar y predecir el comportamiento de diversos fenómenos naturales y procesos sociales. El estudio del cambio climático, los movimientos telúricos de la corteza terrestre (sismos) y la caída libre de los cuerpos cerca de la superficie terrestre, sin considerar la resistencia del aire, representan un importante punto de partida para comprender y aplicar conceptos como distancia, desplazamiento, velocidad, rapidez y aceleración, los cuales forman parte central del movimiento rectilíneo uniforme y acelerado.

Conocerás funciones que representan distintos tipos de movimientos, también aprenderás a despejar variables en diferentes funciones para obtener información sobre objetos en movimiento usando representaciones y métodos tanto gráficos como algebraicos para describir mejor el comportamiento del problema real. Comprenderás mejor diversas situaciones que involucran al movimiento y expresarás con claridad ideas y conceptos relativos al cálculo.

Aprenderás que los modelos matemáticos permiten expresar cantidades físicas empleando diferentes sistemas de unidades y referencia; de esta manera podrás trasladar información del mundo real al matemático y viceversa. Además, valorarás la importancia del uso de herramientas tecnológicas como apoyo para describir y resolver problemas reales que involucren razones de cambio. Al mismo tiempo que adquieres las competencias mencionadas aprenderás a ser más analítico, creativo, autónomo y sistemático.

¿Cómo organizaré mi estudio?

<table>
<thead>
<tr>
<th>Temas</th>
<th>Primera semana</th>
<th>Segunda semana</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Con qué saberes cuento?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funciones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construcción de la recta tangente</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Te recomendamos que dediques 20 horas al estudio esta unidad, dividiendo para ello esta cantidad en 10 sesiones de dos horas cada una, de tal forma que si decides realizar sesiones de estudio diarias en periodos semanales de lunes a viernes, puedas concluir el estudio de esta unidad en un lapso no mayor a dos semanas.

Lograrás así que el avance académico se sustente y describa como sigue:

Semana 1. Comenzando por la necesaria evaluación diagnóstica ¿Con qué saberes cuento? hasta tu actividad definida al final de la segunda parte: 1. Función, un concepto matemático imprescindible para comprender nuestro entorno. En el camino se tratan diversos problemas reales, como la caída libre de los cuerpos, que justifican la necesidad del estudio del movimiento para identificar la razón instantánea de cambio, que no es otra cosa que la pendiente de la recta tangente a una curva o derivada de una función. De esta forma identificarás y comprenderás los problemas que dieron origen al cálculo abordando situaciones reales que involucran movimiento, para incidir y predecir el comportamiento a través de la velocidad y aceleración instantánea del objeto a través del tiempo. La semana termina con el estudio a detalle del concepto matemático de función, que permite la descripción simplificada de todo aquello que nos rodea, desde el microcosmos hasta el macrocosmos como muestra de interacción y movimiento de materia.

Semana 2. La continuidad en el estudio del módulo implica trabajar desde la sección Construcción de la recta tangente a una curva, razón instantánea de cambio y la derivada de una función; hasta llegar al final de la unidad. Se analiza el problema de la recta tangente a una curva y el de máximos y mínimos, casos particulares del desarrollo del cálculo diferencial y sus implicaciones al estudiar y tratar fenómenos naturales y procesos sociales; además, se analiza la derivada de los distintos tipos de funciones, se inducen las propiedades y distintas formas de aplicación. Todo esto es muy importante para el estudio de la segunda unidad, que identifica el proceso inverso del estudio aquí trabajado.

¿Cuáles serán los resultados de mi trabajo?

Al término de la primera unidad, serás capaz de:

- Seleccionar las funciones que utilizarás en el análisis de los fenómenos naturales y procesos sociales para explicar, predecir y proponer alternativas de solución, mostrando una actitud reflexiva y analítica.
- Elaborar e interpretar gráficas o tablas de funciones (lineales, cuadráticas, polinomiales, exponenciales y logarítmicas) que representen cuantitativamente fenómenos naturales y procesos sociales a fin de analizar y describir objetivamente su comportamiento e impacto en tu región o país.
- Identificar el concepto de límite de una función al evaluar numéricamente funciones (lineales, cuadráticas, polinomiales, exponenciales y logarítmicas) que representen un fenómeno físico o proceso social como base para el análisis de éstos.
- Reconocer de manera autónoma en un modelo matemático, si el fenómeno y/o proceso descrito es continuo o presenta intervalos.
- Emplear técnicas desarrolladas en la geometría elemental y la analítica, tales como la obtención de la pendiente de una recta a partir de dos puntos dados o la utilización de triángulos rectángulos para obtener las rectas tangentes a un punto dado en una curva, que describan los fenómenos y/o procesos estudiados, de manera autónoma y sistemática.
- Argumentar el comportamiento de los fenómenos naturales y procesos sociales que inciden en tu vida cotidiana empleando el concepto de razón de cambio, así como la utilización de métodos para
obtener la recta tangente y la pendiente de una recta tangente a un punto de la curva, a fin de reconocer la variación de una función (creciente o decreciente), teniendo siempre una actitud participativa, sistemática y reflexiva.

- Utilizar de manera sistemática el concepto de razón de cambio como medio de análisis del comportamiento de fenómenos naturales y/o procesos sociales presentes en el entorno.
- Calcular la derivada de funciones para tener una idea aproximada de la variación de las mismas, a fin de explicar y predecir situaciones o hechos de manera objetiva, propositiva, crítica y analítica.
- Tener conciencia de la importancia del cálculo para el estudio del comportamiento de los fenómenos naturales y procesos sociales, como concepto para simplificar el análisis de modelos matemáticos que los representen.

¡Comencemos!

Este módulo, denominado *Cálculo en fenómenos naturales y procesos sociales*, se basa en el aprendizaje que hace énfasis en el desarrollo de competencias matemáticas, por consiguiente es muy importante que participes activa y concientemente en las actividades propuestas y descritas en cada una de las secciones.

PRIMERA PARTE

El libro de la naturaleza, quiero decir el universo, está siempre abierto ante nuestros ojos, pero no lo descifrará nadie que no aprenda y entienda antes el idioma y las letras con que está escrito.
El idioma es matemático y las letras son figuras geométricas.

Galileo Galilei (1564-1642)

Movimiento, cambio y límite

El movimiento es una característica de las cosas que existen en la naturaleza, desde partículas muy pequeñas como los átomos y los electrones, hasta los cuerpos de grandes dimensiones como los planetas y las galaxias que experimentan cambios con respecto a su posición; dicho de otra forma, nada permanece eternamente en estado de reposo.

En este primer apartado es muy importante que a partir de una reflexión respondas la siguiente pregunta considerando tus conocimientos previos: ¿qué
sabes sobre el movimiento y el cambio? Menciona algunos ejemplos de tu vida cotidiana que ilustren estos conceptos.

Recuerda verificar tus respuestas en el Apéndice 1.

La naturaleza transforma constantemente la materia, la cual se encuentra en movimiento, y al hacerlo realiza un proceso que altera o modifica su estado o constitución, es decir, la cambia. Diferentes aspectos de estos cambios y movimientos son estudiados por alguna de las disciplinas científicas como la química, física, biología, economía y demografía, entre otras. La química por ejemplo, es la ciencia encargada de estudiar la estructura y el comportamiento de la materia que nos rodea. La física hace su parte como ciencia natural al estudiar y analizar las propiedades del espacio, el movimiento, el tiempo, la materia y energía, así como sus interrelaciones. En la biología se estudia la motilidad, que se refiere a la capacidad adquirida por los organismos vivos para desplazarse de forma espontánea e independiente, mientras que en psicología dicho término representa la capacidad de realizar movimientos complejos y coordinados.

Ahora bien, la rama de la matemática que proporciona el método de análisis cuantitativo y cualitativo de los distintos procesos de cambio, movimiento y dependencia de una magnitud respecto de otra es el Cálculo, también llamado Análisis matemático, que constituye en esencia un método que utiliza como base el concepto de los infinitesimales, el cual también se conoce como limite. El limite tiene que ver con los procesos infinitos en el razonamiento matemático; tales procesos infinitos se habían evitado hasta antes de inventarse el cálculo.

Cuestionarse sobre las causas del movimiento ha sido una tarea que ocupa la mente del ser humano desde hace más de 25 siglos; sin embargo las respuestas que hoy conocemos se desarrollaron a partir de los siglos xvi y xvii gracias a los trabajos realizados por científicos como Galileo Galilei (1564-1642) e Isaac Newton (1642-1727).

Limite: en matemáticas un límite es una magnitud a la que se acercan progresivamente los términos de una secuencia infinita de magnitudes. Un límite matemático, por lo tanto, expresa la tendencia de una función o de una sucesión mientras sus parámetros se aproximan a un cierto valor. Una definición informal del límite matemático indica que el límite de una función \(f(x) \) es \(T \) cuando \(x \) tiende a \(s \), siempre que se pueda hallar para cada ocasión un \(x \) cerca de \(s \) de manera tal que el valor de \(f(x) \) sea tan cercano a \(T \) como se pretendía. Tomado de http://definicion.de/matematicas/

Si queremos determinar el valor exacto de una cierta magnitud podríamos comenzar primero dando una aproximación a dicha magnitud, y después realizar varias aproximaciones cada vez más precisas. Del análisis de esta cadena de aproximaciones llegaríamos al valor exacto de la magnitud si este proceso se siguiera indefinidamente. El valor que deseamos conocer adquiere el carácter de una constante como resultado de un proceso de esa naturaleza.
La dependencia del movimiento en los fenómenos naturales y los procesos sociales

La vida es como andar en bicicleta, para mantener el equilibrio se debe permanecer en constante movimiento.

Albert Einstein (1879-1955)

A través de la historia los cambios incesantes de la naturaleza han detonado procesos permanentes de movimientos y de transformaciones que influyen en la vida humana y su existencia misma.

a) El clima, motor de movimiento social

Sin duda el clima en la Tierra es un factor crucial para la vida y subsistencia de todos los seres humanos. En todas las épocas la sociedad ha tenido que afrontar la variabilidad del clima, en particular los fenómenos extremos. Hablar del clima de un lugar implica hablar de continuo movimiento, ya que con su constante variación afecta la vida cotidiana, las actividades económicas y las condiciones sociales y culturales de ese lugar. La lluvia hace posible la agricultura y la industria; el calor puede acelerar el crecimiento de las plantas y la formación de los frutos; el viento, la lluvia y la temperatura determinan el diseño de las casas, y las pautas continuadas del viento en la atmósfera superior determinan las trayectorias de vuelo preferente de las aeronaves. Las sequías prolongadas, las lluvias torrenciales o los inviernos inclementes afectan a los medios de subsistencia, causando inseguridad y, en ocasiones, muerte y destrucción. Por consiguiente, el clima como factor de cambio y movimiento de cada lugar reviste un interés considerable para la mayoría de las personas.

Los conocimientos y datos climáticos, obtenidos tanto de fuentes científicas y tradicionales como empíricas, encuentran aplicaciones diversas para muy distintos fines, como la organización de las actividades agrícolas, la prevención de brotes de enfermedades infecciosas, el diseño de sistemas de suministro hidráulico y de agüe o la selección de destinos turísticos.

Para entender los mecanismos propios del clima, es necesario comprender que todos ellos están vinculados al denominado *sistema climático* (véase el gráfico 1).

Ciertos gases atmosféricos, como el dióxido de carbono, contrarrestan la pérdida de calor hacia el espacio, dando lugar al conocido efecto invernadero, que mantiene la Tierra a mayor temperatura de lo que cabría esperar. Esos elementos actúan y reaccionan entre sí en un flujo constante, creando pautas continuamente cambiantes de temperatura, nubes, lluvia y viento, entre otros y determinando regímenes climáticos característicos, como los de desiertos, trópicos cálidos y húmedos, bosques montañosos fríos, y demás.
Con base en la información obtenida en los párrafos anteriores, responde las siguientes preguntas:

1. ¿Cómo ayudan las matemáticas en el estudio del cambio climático?

2. ¿De qué forma impacta el clima o los sismos en nuestra vida diaria?

3. Analiza los cambios en la temperatura ambiental que contribuyen a la predicción del clima en determinado período. Justifica tu respuesta.

Recuerda verificar tus respuestas en el Apéndice 1

Uno de los requisitos importantes de la información climática está relacionado con el futuro, es decir, con la toma de decisiones sobre lo que sucederá o podría suceder...
en un periodo inmediato, mediato o de largo plazo. La manera más sencilla de estimar las condiciones climáticas por adelantado consiste en presuponer que las pausas futuras serán muy similares a las del pasado, tal como lo hacen suponer las estadísticas climatológicas, ya que el sistema climático está configurado por los mismos procesos año tras año. Así, esperamos que se mantengan los ciclos diarios y anuales de temperatura y que los meses de invierno sigan siendo más fríos que los de verano.

Hay otras maneras de estimar lo que sucederá en el futuro, por ejemplo considerar otras características del sistema climático, como las fluctuaciones de temperatura del océano o las variaciones de los niveles de gases de efecto invernadero (dicha situación se trata y estudia más adelante). En las siguientes gráficas se representan dos características del clima de Reynosa, Tamaulipas, de las cuales podemos obtener información y tomar decisiones.

De acuerdo con la información presentada en los gráficos 2a y 2b contesta las siguientes preguntas:

Gráfico 2a y 2b. (a) Promedio mensual de precipitación pluvial en Reynosa, Tamaulipas. (b) Variación de temperatura por mes en Reynosa, Tamaulipas.

2. ¿Es cierto que cuando en Reynosa hace más frío, llueve menos? Justifica tu respuesta.

Recuerda verificar tus respuestas en el Apéndice 1

Como se puede observar el concepto de cambio es sinónimo de variación; en el ejemplo anterior se hace presente que la temperatura y la precipitación pluvial son dos características del clima que impactan en la organización de diversas actividades humanas.

b) Los sismos

También un sismo implica movimiento, siendo otro ejemplo de fenómeno natural que implica movimiento y tiene repercusiones en los procesos sociales. Los sismos son resultado de movimientos de las capas geológicas en el interior de la Tierra que liberan de forma repentina enormes cantidades de energía, a pesar de estar siempre en movimiento. Dicha energía se propaga en forma de ondas que provocan movimientos de la superficie terrestre, mismos que conocemos como sismos o terremotos. Las consecuencias de un sismo pueden ser muy negativas no sólo por sus aspectos de destrucción y muerte, sino por el desastre que significan para las economías de los países que padecen estos fenómenos.

Para entender el origen de un sismo se debe considerar que la capa más superficial de la Tierra, denominada litosfera, es una capa rígida compuesta por material que puede fracturarse al ejercer una fuerza sobre él y forma un rompecabezas llamado placas tectónicas.

El 19 de enero de 1995 ocurrió un sismo en Kobe, Japón, que provocó 6,000 muertos y 30,000 heridos y generó graves consecuencias de carácter económico: 300,000 personas sin hogar, destruyó o dañó severamente 100,000 edificios, se produjeron 148 incendios...
que destruyeron un área de 65 hectáreas y los daños se estimaron inicialmente en 200,000 millones de dólares. El caso de Kobe resulta interesante porque en Japón se consideraba que era una zona de riesgo sísmico moderado. Los hechos demostraron lo contrario: Kobe se encuentra en la zona de encuentro de cuatro placas tectónicas.

Como se puede observar las consecuencias de los desastres naturales pueden ser muy significativas y destruir en pocos segundos miles de vidas e inmensos y sostenidos esfuerzos económicos de los países.

Para que se produzca un desastre, además de la acción de la naturaleza debe estar asociada la vulnerabilidad generada por el hombre. Se entiende por vulnerabilidad el aumento en la ocupación irracional del territorio, el crecimiento de la población, viviendas e infraestructura inadecuadas, los procesos de degradación ambiental, entre otros factores.

A partir de la siguiente tabla, donde se especifica el número de sismos en México entre los años 1990 al 2008, clasificados por su magnitud, elabora las siguientes gráficas, en la computadora o en tu cuaderno, y responde las preguntas.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>TOTAL DE SISMOS</th>
<th>0 - 2.9</th>
<th>3 - 3.9</th>
<th>4 - 4.9</th>
<th>5 - 5.9</th>
<th>6 - 6.9</th>
<th>7 - 7.9</th>
<th>8 - 8.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>792</td>
<td>13</td>
<td>246</td>
<td>509</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>732</td>
<td>6</td>
<td>184</td>
<td>510</td>
<td>30</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>613</td>
<td>5</td>
<td>183</td>
<td>398</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>917</td>
<td>48</td>
<td>275</td>
<td>548</td>
<td>40</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>622</td>
<td>20</td>
<td>192</td>
<td>383</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>676</td>
<td>16</td>
<td>188</td>
<td>438</td>
<td>26</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>790</td>
<td>9</td>
<td>203</td>
<td>543</td>
<td>32</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>1019</td>
<td>57</td>
<td>388</td>
<td>533</td>
<td>34</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>1023</td>
<td>13</td>
<td>453</td>
<td>531</td>
<td>21</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>1097</td>
<td>13</td>
<td>540</td>
<td>527</td>
<td>11</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>1052</td>
<td>37</td>
<td>463</td>
<td>531</td>
<td>18</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>1344</td>
<td>17</td>
<td>704</td>
<td>585</td>
<td>32</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
1. Realiza la gráfica del número de sismos de 3 a 5 grados de magnitud (de leves a moderados) ocurridos cada uno de los años de ese periodo en México. ¿Está aumentando el número de sismos?

2. Realiza la gráfica del número de sismos de 5 a 7 grados de magnitud (de moderados a fuertes) ocurridos cada año desde 1990 a 2008 en México. ¿Está aumentando el número de sismos?

3. Realiza la gráfica del número de sismos mayores de 7 grados de magnitud (muy fuertes) ocurridos cada año desde 1990 a 2008 en México. ¿Está aumentando el número de sismos?

Recuerda verificar tus respuestas en el Apéndice 1

A partir de lo anterior se debe enfatizar que el estudio de diversos fenómenos naturales que provocan efectos importantes en la sociedad, como el clima o los sismos, tienen sustento al tratar conceptos como el movimiento, el cambio y el límite. Analizar la información sobre la variación de la temperatura, la precipitación pluvial o los movimientos telúricos con respecto al tiempo y en diferentes regiones, permite no sólo identificar escenarios que se gestan en diferentes periodos, sino que cobra relevancia al predecir factores de riesgo y la viabilidad de la toma de decisiones para la prevención de desastres.

Ahora bien, independientemente del fenómeno natural o proceso social en estudio, las matemáticas representan una herramienta poderosa para modelar situaciones o problemas reales a partir del concepto función, y una de las más importantes para el planteamiento y resolución de diversos problemas relacionados
con procesos de cambio es lo que conocemos hoy en día como *derivada de una función*, que de forma objetiva describe la comparación entre magnitudes que cambian instantáneamente, es decir, describen la *razón instantánea de cambio*. Así, el determinar para cierto instante el cambio de la temperatura ambiental, el crecimiento de cierta población o la velocidad de un proyectil en caída libre, representan ejemplos de problemas que permiten entender mejor nuestro entorno y que se abordan y resuelven con el uso de la derivada de una función.

La caída libre de un proyectil, un excelente punto de partida

Determinar en cualquier instante la velocidad de un cierto cuerpo, objeto o proyectil que cae libremente por acción de la gravedad es y ha sido históricamente un gran desafío para el ser humano, sobre todo porque el establecer métodos de análisis cuantitativos y cualitativos que contribuyan a estudiar y tratar este tipo de fenómenos ha propiciado avances científicos, tecnológicos y la necesaria comprensión de nuestro entorno.

Con base en la ley de caída libre propuesta por Galileo, la distancia desde el nivel del piso de un proyectil que cae desde una cierta altura (despreciando la resistencia del aire) está expresada por la función cuadrática siguiente:

\[d(t) = \frac{1}{2} g t^2 + v_0 t + d_0 \quad ... \quad (1) \]

Donde: \(d(t) \) es la función distancia que representa el movimiento del proyectil y \(t \) es la variable independiente que representa el tiempo transcurrido.

\(g = -9.8 \text{m/s}^2 \) representa el valor aproximado de la aceleración debida a la gravedad (el signo negativo hace referencia al movimiento del objeto con dirección al centro del planeta); \(d_0 \) es la distancia inicial al suelo desde donde se suelta o arroja el proyectil y \(v_0 \) es la velocidad inicial del proyectil.

El filósofo griego Aristóteles (384 a.C.-322 a.C.) propuso explicaciones sobre lo que ocurría en la naturaleza considerando las observaciones que hacía de las experiencias cotidianas y sus razonamiento, aunque no se preocupaba por comprobar sus afirmaciones. Formuló su teoría sobre la caída de los cuerpos afirmando que los más pesados caían más rápido que los más ligeros, es decir entre más peso tengan los cuerpos más rápido caen. Esta teoría fue aceptada durante casi dos mil años hasta que en el siglo xvii Galileo realizó un estudio más cuidadoso sobre el movimiento de los cuerpos y su caída. Cuenta la leyenda que se subió a lo más alto de la torre de Pisa y al soltar dos objetos de distinto peso, observó que los cuerpos caen a la misma velocidad sin importar su peso, quedando así descartada la teoría de la caída de los cuerpos de Aristóteles.
A continuación se describe un ejemplo concreto donde la caída libre de un cuerpo permite determinar una razón instantánea de cambio, en este caso la velocidad. Analicemos un problema particular del movimiento de un proyectil en caída libre, donde el objetivo será el determinar la velocidad justo en el primer segundo transcursado. Para ello consideremos que dicho móvil se deja caer (velocidad inicial cero) desde la azotea de un edificio cuya altura es de 78.4 metros.

Entonces, ¿qué ecuación se obtiene al sustituir los datos en la ecuación (1)? Escríbela aquí, a continuación:

\[d(t) = -4.9t^2 + 78.4 \quad \ldots \quad (2) \]

Ésta es una función cuadrática que puede ser representada gráficamente en el plano cartesiano.
¿Qué te indica el signo negativo del coeficiente del término \(t^2 \)?

Si has respondido que se trata de una parábola cóncava hacia abajo, vas bien; en caso contrario reflexiona sobre tu razonamiento, ¿Cuál es el eje de simetría? Seguramente conjeturaste que es el eje vertical \(d(t) \), y ello es correcto; si no, ya lo sabes, revisa tus procesos de reflexión.

Los cortes en los ejes de coordenadas del plano cartesiano (tiempo vs distancia) se determinan a continuación.
Si hacemos \(t = 0 \) en la función distancia \(d(t) \), entonces, ¿cómo queda la ecuación que tuviste anteriormente?
Si tu respuesta es igual a esta \(d(0) = -4.9(0) + 78.4 = 78.4 \), vas bien. El valor 78.4 determina el punto \((0, 78.4)\). ¿qué representa dicho valor?

Representa el corte en el eje vertical, de hecho es el punto de partida del fenómeno observado.

Ahora bien, si hacemos \(d(t) = 0 \), ¿cómo queda la ecuación que encontraste?

Pues sí, si hacemos la sustitución queda \(0 = -4.9t^2 + 78.4 \); al despejar la variable independiente se obtiene: \(t = \pm \sqrt{\frac{78.4}{4.9}} = \pm \sqrt{16} = \pm 4 \) s.

Dado este resultado, ¿cuáles son los puntos donde corta la parábola al eje horizontal?

Cierto, los puntos son \(t_1 = (-4.0) \) y \(t_2 = (4.0) \). De hecho el tiempo establecido por \(t_2 \) es el momento de impacto del proyectil con el piso, mientras que el tiempo \(t_1 \) carece de sentido en el fenómeno estudiado. Una pregunta interesante sería el responder por qué carece de sentido el preguntarnos sobre la posición o distancia del proyectil en el tiempo \(t_1 = (-4.0) \).

Las figuras 2a y 2b describen el fenómeno anterior desde la perspectiva de la física y la matemática respectivamente.

De acuerdo con el problema planteado la gráfica de la función distancia sólo tiene sentido para cualquier \(t \geq 0 \), así que para poder determinar la distancia del proyectil respecto al piso basta con evaluar la función en cualquier tiempo \(t \in [0, 4] \), es decir, dentro de dicho intervalo, lo que nos indica por qué no tiene significado el tiempo \(t_1 = (-4.0) \).

Ahora bien, para determinar la velocidad del proyectil en cualquier instante conviene recordar algunos principios de la física. Si un cuerpo en movimiento tiene una velocidad constante, entonces ésta queda expresada como el cociente de la distancia entre el tiempo de la siguiente forma:

\[
v = \frac{d}{t}
\]

Pero si la velocidad del cuerpo o proyectil en movimiento no es constante, como sucede en el problema que estamos analizando, entonces se define la velocidad media o promedio a través del cociente entre las diferencia de las distancias y las del tiempo, como lo representa la siguiente expresión matemática:

\[
v_{\text{promedio}} = \frac{d(t_f) - d(t_i)}{t_f - t_i}
\]
La velocidad promedio es la distancia final menos la distancia inicial entre el tiempo final menos el tiempo inicial, es decir, representa la razón del incremento de la distancia respecto al incremento en el tiempo. Debe quedar claro que la definición anterior está basada en la idea de aproximar la velocidad del proyectil en un intervalo de tiempo a partir de una velocidad constante conocida como velocidad promedio o velocidad media.

De esta forma la velocidad promedio permite realizar aproximaciones para determinar la velocidad del proyectil en un determinado instante. Es importante resaltar que las aproximaciones ofrecen resultados más precisos conforme el intervalo en el tiempo se reduce. A continuación se realiza un análisis del cambio en las velocidades promedio para poder calcular el valor exacto de la velocidad del proyectil justo en el primer segundo transcurrido de tiempo, es decir, la velocidad instantánea en $t = 1$. En la siguiente tabla se toma como ancla o distancia final el
tiempo final \(t = 1 \), y se asignan valores al tiempo (inicial) cada vez más cercanos tanto mayores como menores que 1.

Tabla 2 Velocidad promedio de un proyectil en caída libre

<table>
<thead>
<tr>
<th>Tiempo inicial ((t_i))</th>
<th>Distancia inicial, (d(t_i) = -4.9(t_i)^2 + 78.4)</th>
<th>Incremento en la distancia, (\Delta d(t) = d(t_f) - d(t_i))</th>
<th>Incremento en el tiempo, (\Delta t = t_f - t_i)</th>
<th>Velocidad promedio, (\Delta d(t) / \Delta t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>77.1750</td>
<td>-3.6750</td>
<td>0.50</td>
<td>-7.350</td>
</tr>
<tr>
<td>0.6</td>
<td>76.6360</td>
<td>-3.1360</td>
<td>0.40</td>
<td>-7.840</td>
</tr>
<tr>
<td>0.7</td>
<td>75.9990</td>
<td>-2.4990</td>
<td>0.30</td>
<td>-8.330</td>
</tr>
<tr>
<td>0.8</td>
<td>75.2640</td>
<td>-1.7640</td>
<td>0.20</td>
<td>-8.820</td>
</tr>
<tr>
<td>0.9</td>
<td>74.4310</td>
<td>-0.9310</td>
<td>0.10</td>
<td>-9.310</td>
</tr>
<tr>
<td>0.99</td>
<td>73.5975</td>
<td>-0.0975</td>
<td>0.010</td>
<td>-9.7510</td>
</tr>
<tr>
<td>0.999</td>
<td>73.50980</td>
<td>-0.00980</td>
<td>0.0010</td>
<td>-9.79510</td>
</tr>
<tr>
<td>0.9999</td>
<td>73.500980</td>
<td>-0.000980</td>
<td>0.00010</td>
<td>-9.799510</td>
</tr>
<tr>
<td>0.99999</td>
<td>73.5000980</td>
<td>-0.0000980</td>
<td>0.000010</td>
<td>-9.7999510</td>
</tr>
<tr>
<td>0.999999</td>
<td>73.50000980</td>
<td>-0.00000980</td>
<td>0.0000010</td>
<td>-9.79999512</td>
</tr>
<tr>
<td>1tf</td>
<td>73.500000000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000001</td>
<td>73.4999999920</td>
<td>0.0000000980</td>
<td>-0.000000010</td>
<td>-9.8000003788</td>
</tr>
<tr>
<td>1.000001</td>
<td>73.49999920</td>
<td>0.000000980</td>
<td>-0.00000010</td>
<td>-9.800004890</td>
</tr>
<tr>
<td>1.00001</td>
<td>73.499920</td>
<td>0.0000980</td>
<td>-0.00010</td>
<td>-9.800490</td>
</tr>
<tr>
<td>1.001</td>
<td>73.49020</td>
<td>0.00985</td>
<td>-0.010</td>
<td>-9.8490</td>
</tr>
<tr>
<td>1.01</td>
<td>73.4015</td>
<td>0.985</td>
<td>-0.10</td>
<td>-10.290</td>
</tr>
<tr>
<td>1.1</td>
<td>72.4710</td>
<td>1.0290</td>
<td>-0.20</td>
<td>-10.780</td>
</tr>
<tr>
<td>1.2</td>
<td>71.3440</td>
<td>2.1560</td>
<td>-0.30</td>
<td>-11.270</td>
</tr>
<tr>
<td>1.3</td>
<td>70.1190</td>
<td>3.3810</td>
<td>-0.40</td>
<td>-11.760</td>
</tr>
<tr>
<td>1.4</td>
<td>68.7960</td>
<td>4.7040</td>
<td>-0.50</td>
<td>-12.250</td>
</tr>
<tr>
<td>1.5</td>
<td>67.3750</td>
<td>6.1250</td>
<td>-0.60</td>
<td>-12.750</td>
</tr>
</tbody>
</table>

Del análisis de los datos en la última columna, velocidad promedio, se obtiene un valor constante que determina la velocidad instantánea del proyectil para \(t = 1 \).

Una pregunta importante para ti es: ¿podrías identificar dicho valor constante al que tienden las diferentes aproximaciones infinitas (velocidades promedio)?

De la tabla anterior se observa que para intervalos tanto por arriba como por debajo del ancla \(t = 1 \), las velocidades promedio tienden (se acercan) entre sí a un valor constante. En esta parte se ha utilizado un paso de acercamiento muy fino, es decir, se obtienen mejores aproximaciones al reducir gradualmente el incremento.
en el tiempo, por ejemplo, al definir \(t_f = 1 \) y el tiempo inicial \(t_1 = 1.0001 \), entonces el incremento en el tiempo es \(t_f - t_i = -0.0001 \); de tal forma que la velocidad promedio resultante es:

\[
\nu_{\text{promedio}} = \frac{d(t_f) - d(t_i)}{t_f - t_i} = \frac{d(1) - d(1.0001)}{-0.0001} = 9.800490 \text{ m/s}
\]

Al utilizar un paso de acercamiento cada vez más fino, o dicho de otra forma, haciendo que el incremento en el tiempo sea cada vez más pequeño, se obtiene un proceso infinito de mejores aproximaciones que tienden a un valor constante de la velocidad del proyectil en el tiempo \(t = 1 \), a saber = 9.8 m/s, valor que coincide con la aceleración debida a la gravedad. En el lenguaje de las matemáticas el concepto llamado \textit{límite}, representa el valor constante al que tienden las aproximaciones infinitas de las velocidades promedio conforme el incremento en el tiempo tiende a cero.

Si alguien te preguntara qué caerá más rápido al soltarlo desde una terraza, un piano o un trozo de papel, ¿qué responderías? Justifica tu respuesta y compárala con el siguiente experimento; si es distinta tu respuesta a la conclusión del experimento, analiza por qué sucedió así.

Materiales:
- Trozo de papel
- Moneda

Procedimiento:

Primera parte

Toma el trozo de papel sin doblarlo, no importa si es de periódico o de mayor calidad, y tampoco importa su tamaño, aunque el experimento funciona mejor con un trozo no...
mayor a 20 cm por lado aproximadamente. También toma una moneda; tampoco im-
porta el material ni el tamaño
Debes tomar uno con cada mano y dejarlos caer al mismo tiempo al suelo desde la
misma altura. Como verás, la moneda llega primero al piso que el trozo de papel.
1. ¿Por qué?

Segunda parte
Ahora toma de nuevo el trozo de papel y con fuerza transfórmalo en una pelota muy
pequeña y compacta. Nuevamente deja caer al mismo tiempo ambos, observa y res-
ponde qué sucede,
2. ¿Cómo funciona?

Seguramente y a primera impresión parece que la pelota de papel es más pesada al
compactarla, pero si piensas un poco esto no es así, ya que la cantidad de papel que hay
antes y después de compactarlo es la misma.
3. ¿Cómo explicas lo que realmente sucedió en estas dos partes del experimento casero?
Escribe tus conclusiones con base en los resultados que acabas de obtener y explica lo
que está pasando.

Recuerda verificar tus respuestas en el Apéndice 1

Con estas ideas como base vamos a describir el método de análisis que permite
resolver el problema de encontrar la velocidad de un proyectil en caída libre para
cualquier tiempo \(t \). Esta herramienta matemática, tan importante en el estudio y
tratado de fenómenos naturales y procesos sociales, se conoce como \textit{método de
incrementos} y contribuye en la determinación de la \textit{razón instantánea de cambio}.
Este tipo de análisis se puede aplicar al estudio de fenómenos sociales, como se
verá más adelante.

\textbf{Método de los incrementos}

Este método consiste en aumentar una determinada
cantidad arbitraria a una de las variables y proceder a
analizar el comportamiento de la función incrementada.
Consideremos un intervalo de tiempo, expresado
en términos generales a partir de \([t, t + \Delta t] \), en donde
se ha introducido la notación Δt (delta t) que significa *incremento del tiempo*. Ahora calculemos la velocidad promedio entre el tiempo t y $t + \Delta t$, para la función distancia descrita anteriormente:

$$
V_{promedio} = \frac{d(t_f) - d(t_i)}{t_f - t_i} = \frac{\Delta d}{\Delta t} = \frac{d(t + \Delta t) - d(t)}{(\Delta t + t - t)}
$$

sustituyendo valores se tiene:

$$
V_{promedio} = \frac{\Delta d}{\Delta t} = \frac{-4.9(t + \Delta t)^2 + 78.4 - (-4.9t^2 + 78.4)}{\Delta t}
$$

desarrollando:

$$
V_{promedio} = \frac{\Delta d}{\Delta t} = \frac{-4.9(t^2 + 2t(\Delta t) + (\Delta t)^2) + 78.4 - (-4.9t^2 + 78.4)}{\Delta t}
$$

$$
V_{promedio} = \frac{\Delta d}{\Delta t} = \frac{-4.9t^2 - 9.8t(\Delta t) - 4.9(\Delta t)^2 + 78.4 + 4.9t^2 - 78.4}{\Delta t}
$$

$$
V_{promedio} = \frac{\Delta d}{\Delta t} = -9.8t - 4.9\Delta t
$$

Del análisis de esta última ecuación, ¿qué pasa si el incremento en el tiempo disminuye cada vez más? ¿Qué significado tiene esta disminución?

De hecho, si el incremento del tiempo tiende a cero (es cada vez más pequeño), ¿qué pasa con la velocidad promedio?

Seguro ya lo respondiste correctamente, se aproxima al valor de la velocidad instantánea en el tiempo t, esto implica que el segundo sumando tienda a cero también (se hace arbitrariamente pequeño), en otras palabras, ¿qué pasa si Δt tiende a cero?

Así es, la velocidad promedio tiende a $-9.8t$. En lenguaje matemático, lo anterior se expresa de la siguiente forma:

$$
V_{instantánea} = \lim_{\Delta t \to 0} \left\{ V_{promedio} \right\} = \lim_{\Delta t \to 0} \left\{ \frac{\Delta d}{\Delta t} \right\}
$$

donde $\lim_{\Delta t \to 0} \left\{ \right\}$, representa la notación matemática del concepto denominado límite, el que al final de la presente sección se describe en palabras de Isaac Newton y se presenta una definición.

Es decir, en términos del problema planteado se tiene que:

$$
V_{instantánea} = \lim_{\Delta t \to 0} \{-9.8t - 4.9\Delta t\} = -9.8t
$$

Cálculo en fenómenos naturales y procesos sociales
por lo que la velocidad del proyectil en el instante \(t = 1 \) es:

\[
v_{\text{instantánea}} = -9.8(1) = -9.8 \text{ m/s}
\]

A partir del método de incrementos y con el simple hecho de sustituir valores, podemos responder fácilmente la siguiente pregunta: ¿cuál es la velocidad de impacto con el piso del proyectil?, o dicho de otra forma, ¿cuál es la velocidad instantánea del proyectil en \(t = 4 \)?

El tiempo de choque con el piso ya se había calculado anteriormente al realizar la gráfica de la función distancia, de hecho representa uno de los cortes con el eje \(t \). Por lo tanto, la velocidad del proyectil al momento del choque con el piso es:

\[
v_{\text{instantánea}} = -9.8(4) = -39.2 \text{ m/s}
\]

La idea y desarrollo del concepto del límite como método de análisis matemático fue producto del trabajo de muchas generaciones que comenzaron con Arquímedes, uno de los grandes exponentes de las matemáticas de la antigua Grecia, hasta culminar con los trabajos de Issac Newton (1642-1727) y Gottfried Leibniz (1646-1716) en el siglo xvii, quienes desarrollaron el cálculo matemático que hoy en día se utiliza para estudiar y tratar fenómenos naturales y procesos sociales. Este trabajo matemático tiene sustento en la búsqueda de solución de problemas que no se habían podido resolver mediante los métodos de la aritmética, el álgebra y la geometría elemental. De la misma forma, en la construcción de los conocimientos anteriores pusiste en práctica competencias que te servirán a lo largo de la vida, incluso en contextos que rebasan con mucho los saberes propios de las matemáticas, ya que te han ayudado a formar una concepción sistemática, objetiva y científica que pondrás en práctica al afrontar cualquier problema de tu contexto.

Como ya se dijo al principio, el cálculo se desarrolló gracias a cuatro importantes problemas en los que los matemáticos europeos trabajaban durante el siglo XVII:

- El problema de la velocidad y la aceleración.
- El problema de la recta tangente.
- El problema de máximos y mínimos.
- El problema del área en figuras cuya frontera es curva.

Cada uno de estos problemas comprende la noción del límite y es posible tratar el cálculo matemático con cualquiera de ellos. El primero de los problemas mencionados es precisamente el que se ha estudiado en esta sección como ejemplo y cuya solución contribuyó al origen del concepto de derivada de una función y al denominado Cálculo diferencial. El segundo y el tercer problema mencionados tienen relación con la derivada y el Cálculo diferencial,
Este nuevo método de análisis, el límite —y en general el Cálculo diferencial e integral— tuvo enormes repercusiones en la ciencia y la tecnología, en especial en la mecánica y en la solución de problemas de geometría. La rápida extensión de las aplicaciones del cálculo motivaron el desarrollo de otras ramas de la matemática como la teoría de series y las ecuaciones diferenciales. En un principio, en la época de Newton, el cálculo no era muy conocido; la notación definitiva y el formalismo que actualmente se utiliza se asentó hasta la mitad del siglo xix con el trabajo del matemático francés Augusto Cauchy (1789-1857).

La presente sección termina citando el lema que Isaac Newton ofrece sobre el concepto de límite en su obra maestra:

“Las cantidades, y las razones de cantidades, que en cualquier tiempo finito tienden continuamente a la igualdad, y antes de terminar ese tiempo se aproximan una a otra más que por ninguna diferencia dada, acaban haciéndose en última instancia iguales”.

Ahora bien, debe quedar claro que el enfoque del presente libro no trata al Cálculo desde el punto de vista de los infinitesimales, pero dada su importancia histórica para las matemáticas, a continuación se ofrece al lector una definición que resulta útil para la determinación del valor límite de una función.

Definición de límite de una función

El límite de una función f en a es L, si para α infinitesimal se tiene que:

$$F(q + \alpha) = L + \beta F(a + \alpha) = L + \beta,$$

con β infinitesimal.

Es importante señalar que la definición anterior tiene sentido aplicarla cuando se presenta la forma indeterminada 0/0.

Por ejemplo, si f es la función definida por

$$f(x) = \frac{1 - \sqrt{x}}{1 - \sqrt[3]{x}}$$

se debe observar que para $x = 1$ el denominador y numerador anterior se anulan, por lo que se tiene la forma indeterminada. Conviene entonces preguntarse por el límite de la función cuando x tiende a 1 ($x \to 1$).
Autoevaluación

Trabaja en tu cuaderno o en hojas sueltas para que puedas disponer del espacio suficiente para realizar todas las operaciones y reflexiones que requieras.

1. Elabora un cuadro sinóptico que te permita identificar las características de los conceptos de movimiento, cambio y límite, así como las relaciones que se establecen entre ellos para el estudio de los fenómenos naturales y procesos sociales.

2. Contesta las siguientes preguntas acerca de tu relación con los fenómenos naturales y procesos sociales.
 a) ¿Cuál es la importancia del cálculo en tu vida cotidiana?
 b) ¿Por qué razón te es útil el conocimiento sobre los comportamientos de los fenómenos naturales y los procesos sociales mediante el cálculo?
 c) ¿Qué otros aspectos te gustaría saber acerca del comportamiento de fenómenos naturales y procesos sociales de tu entorno?

3. Resuelve los siguientes ejercicios referentes a lo expuesto en la sección Caida libre de cuerpos para determinar la velocidad instantánea a partir del concepto de límite.
 a) Un proyectil se arroja verticalmente hacia abajo, despreciando la resistencia del aire, con una velocidad inicial de 19.6 m/s desde la parte alta de una torre cuya altura es 147 metros. La función distancia que describe el movimiento del proyectil en el tiempo está dada por: \(d(t) = \frac{1}{2}gt^2 - 19.6t + 147 \), donde \(g = -9.8 \text{m/s}^2 \) es el valor de la aceleración debido a la gravedad.

De esta forma al aplicar la definición de límite de una función se tiene que:

\[
f(1 + \alpha) = \frac{1 - (1 + \alpha)^{\frac{1}{3}}}{1 - (1 + \alpha)^{\frac{1}{4}}} = \frac{1 - \left(1 + \frac{1}{3}\alpha + o(\alpha)^{2}\right)}{1 - \left(1 + \frac{1}{4}\alpha + o(\alpha)^{2}\right)} = \frac{1}{3}\alpha + o(\alpha)^{2} = \frac{1}{3}\alpha
\]

\[
f(1 + \alpha) = \frac{4}{3} + \text{infinitesimal}.
\]

Por lo tanto,

\[
\lim_{x \to 1} \frac{1 - \frac{3}{x}}{1 - \frac{4}{x}} = \frac{4}{3}
\]
b) Haz una tabla como la tabla 2 *Velocidad promedio de un proyectil en caída libre*, que permita obtener las velocidades promedio en distintos intervalos de tiempo alrededor de *t* = 5 segundos.

I. Utiliza la tabla anterior para analizar las aproximaciones obtenidas y determina el valor de la velocidad al instante o tiempo *t* = 5.
II. Realiza la gráfica de la función distancia *d(t)* que esquematiza el desplazamiento del proyectil en el tiempo.
III. A partir de los resultados obtenidos en los incisos anteriores y del ejemplo tratado en la sección, responde la siguiente pregunta: ¿cuál es la velocidad instantánea del proyectil para todo tiempo?

c) Un proyectil es arrojado hacia arriba con una velocidad inicial de 98 m/s desde el lugar más elevado de una torre cuya altura asciende a 245 metros.

I. Escribe la función distancia *d(t)* que describe el movimiento del proyectil en el tiempo.
II. Realiza una tabla para obtener las velocidades promedio en distintos intervalos de tiempo alrededor de *t* = 8 segundos.
III. Utilizando la tabla anterior analiza las aproximaciones obtenidas y determina el valor de la velocidad instantánea en el tiempo *t* = 8.
IV. Trazas la gráfica de la función distancia *d(t)* que esquematiza el desplazamiento del proyectil en el tiempo.
V. ¿Cuál es la altura máxima desde la superficie que alcanza el proyectil?
VI. ¿En qué tiempo choca el proyectil con la superficie terrestre?
VII. ¿Cuál es la velocidad instantánea del proyectil para todo tiempo?

d) El análisis matemático de situaciones que involucran el estudio del crecimiento poblacional permite comprender procesos sociales. A continuación se presenta un contexto en donde el microcosmos representa el objeto de estudio a partir del tratamiento del modelo matemático respectivo. Cierto cultivo de bacterias crece de modo que tiene una masa expresada mediante la siguiente función (modelo matemático) de segundo grado:

\[m(t) = \frac{1}{2} t^2 + t, \]

en gramos después de *t* horas.

I. Encuentra la gráfica de la función masa:

\[m(t) = \frac{1}{2} t^2 + t \]

II. ¿Cuánto creció el cultivo en el intervalo 2 ≤ *t* ≤ 2.01?
III. ¿Cuál fue su crecimiento promedio en el mismo intervalo?
IV. ¿Cuál es su crecimiento instantáneo en *t* = 2 horas?
V. A partir de los resultados obtenidos en los incisos anteriores y del ejemplo tratado en la sección, responde la siguiente pregunta: ¿cuál es el crecimiento instantáneo del cultivo de bacterias para todo tiempo?
4. Investiga en diversas disciplinas de estudio en qué situaciones se presentan problemas que involucren cambios instantáneos.

5. A partir de la bibliografía descrita en el presente libro o haciendo uso de recursos como Internet, investiga dos ejemplos que representen problemas de la biología, la química y la economía en donde se requiera la aplicación del método de incrementos para el análisis de cambios instantáneos.

 a) Elabora un reporte de tu investigación en donde se describan los problemas que hayas seleccionado, justifica por qué consideras que son ejemplos que demanden cambios instantáneos.

 b) Incluye tus conclusiones sobre los casos investigados.

Recuerda verificar tus respuestas en el Apéndice 1

SEGUNDA PARTE

Todos los efectos de la naturaleza no son más que resultados matemáticos de unas cuantas leyes inmutables.

Pierre Simon Laplace (1749-1827)

El francés Pierre Simon Laplace fue uno de los grandes defensores del denominado determinismo, una doctrina filosófica que sostiene que todo acontecimiento físico, incluyendo el pensamiento y las más diversas acciones humanas, están causalmente determinados por la irrompible cadena causa-efecto. Simon Laplace llegó a pensar que sólo con conocer la posición y velocidad inicial de cualquier cuerpo celeste o partícula se podría describir puntualmente y con detalle la trayectoria completa a través del tiempo (pasado y futuro) de dicha partícula o cuerpo.

Tu tarea es indagar sobre los diferentes tipos de determinismo, sus fundamentos y las implicaciones en el desarrollo histórico del ser humano, elaborarás una línea de tiempo con el objeto de identificar los distintos tipos de determinismo y sus características principales. Te recomendamos usar recursos como Internet o la bibliografía descrita en este libro o en alguno de tus estudios previos.

Recuerda verificar tus respuestas en el Apéndice 1

Hoy en día existen teorías científicas revolucionarias, como el caos o la dinámica no lineal en sistemas complejos, que se contraponen a los principios y al trabajo realizado bajo el determinismo laplaciano. Sin embargo la herramienta matemática conocida con el nombre de función permite representar y estudiar a través de lenguaje simbólico el comportamiento de nuestro entorno. Éste es el tema central que se desarrolla en las siguientes secciones y que vincula los conocimientos previos...
con el poder que ofrece el cálculo matemático en el planteamiento y resolución de problemas cotidianos.

Función, un concepto matemático imprescindible para comprender nuestro entorno

En la naturaleza y en casi todas las cuestiones prácticas del quehacer humano encontramos relaciones entre magnitudes que varían unas respecto de otras. Por ejemplo, una varilla metálica cambia de longitud, así sea milimétricamente, por el efecto de la temperatura; la distancia que recorre un objeto cuando cae depende del tiempo transcurrido, el área de un círculo depende de la longitud de su radio, la iluminación que produce un foco a su alrededor depende de la altura a la que es colocado y la propia capacidad del foco; la ganancia de los empresarios depende de cuánto ingresa a sus empresas por ventas menos lo que gasta en el proceso productivo; una población crecerá de acuerdo con magnitudes como la temperatura, la cantidad de nutrientes o la intensidad de la competencia por la sobrevivencia, entre otros muchos factores.

Todas estas relaciones, entre muchas otras, que corresponden a la dependencia de una magnitud respecto de otra, se han descubierto con base en la observación y la experimentación y constituyen la base sobre la cual a través de siglos se ha logrado instituir el concepto matemático de función, el cual permite la descripción simplificada de todo aquello que nos rodea, desde el microcosmos hasta el macrocosmos, como muestra de interacción y movimiento de la materia. De hecho, las funciones matemáticas se han estado analizando y estudiando a lo largo del presente escrito y en cursos anteriores.

El concepto de **función matemática** es en términos prácticos lo siguiente:

> Es el valor o la variación de una magnitud que queda determinada por otra magnitud de acuerdo con una cierta regla. A la primera magnitud se le denomina variable dependiente, mientras que la segunda recibe el nombre de variable independiente. Al conjunto de valores o números de la variable independiente se le llama dominio de la función, que en otras palabras, representa el conjunto donde está bien definida. La descripción de función de una variable independiente se materializa en términos de símbolos matemáticos y a la vez es representada mediante una gráfica, gracias al trabajo de René Descartes (1596-1650), con lo cual nació la geometría analítica.

La notación para describir una función matemática es \(y = f(x) \), que se lee como: \(y \) es función de \(x \). En la siguiente figura se representa gráficamente una función en el plano cartesiano.
Las funciones tienen cuatro componentes principales:

1. El *dominio* o conjunto de los valores de la variable independiente x para los cuales está definida la función. Dichos valores se ubican a lo largo del eje horizontal (abscisas) del plano cartesiano y permiten que los valores de la variable dependiente y queden determinados por la relación: $f(x) = y$.

2. La *regla* $f(x)$ que relaciona cada valor de la variable independiente x con un único valor de la variable dependiente y.

3. La *imagen* o conjunto de los valores de la variable dependiente y que se ubican a lo largo del eje vertical (ordenadas), y cuyo valor se determina al aplicar la función a los valores asignados de la variable x.

4. La *gráfica de la función* o el conjunto de puntos en el plano cartesiano $(x, y) = (x, f(x))$.

Por lo tanto:

Una función matemática es una relación f, constituida por un conjunto de pares ordenados (x, y) que forman el conjunto solución de una ecuación de la forma $y = f(x)$, llamada regla de correspondencia entre dos conjuntos (dominio y codominio), y en el que no existen dos pares diferentes que tengan el mismo primer componente (véase la figura 4).

A continuación se describen gráficamente algunas de las funciones matemáticas que suelen ser útiles para estudiar diferentes fenómenos naturales y procesos sociales.
La función lineal

Como su nombre lo indica, la gráfica de la función lineal es siempre una línea recta. Daremos algunos ejemplos de este tipo de funciones, cuya forma general es:

\[f(x) = mx + b \]

lo que significa que multiplicamos el valor de “x” m veces y después agregamos “b” unidades. Gráficamente esto se puede ver de la siguiente forma:

Completa la siguiente tabla y haz la gráfica de esta función: \(f(x) = -3x + 7 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-3x + 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
</tbody>
</table>
¿Cuál es el valor de “m” para ambas funciones?

Para la función identidad, \(m = 1 \), para la otra función, \(m = -3 \)

Si \(m < 0 \), ¿qué tipo de ángulo forma con respecto al eje \(x \)?
Si \(m > 0 \), ¿qué tipo de ángulo forma con respecto al eje \(y \)?

Vuelve a utilizar los ejes coordenados y grafica las siguientes funciones: \(\frac{1}{2}x + 3 \), \(-x + 2 \).

¿Cuáles son los valores de las pendientes para ambas gráficas?

¿Qué tipo de ángulo se vuelve a formar cuando la pendiente es positiva?, ¿y cuando es negativa qué ángulo forma?

Con base en lo anterior, ¿podrías decir qué papel juega la “m” en la formula general de la ecuación lineal?

Ahora tabula, analiza y grafica la función cuando “b” cambia de valores, es decir cuando toma tanto valores positivos como negativos, por ejemplo analiza estas dos funciones: \(-2x - 5\), \(x + 4\).
¿Qué papel juega la “b” en la fórmula general de la ecuación lineal?

Con base en lo que analizaste anteriormente podemos decir que en la fórmula
\[f(x) = mx + b \]
\(m \) representa la pendiente de la recta y \(b \) es la ordenada al origen (punto donde corta la recta al eje \(y = f(x) \)).
La función cuadrática en la variable x

$$f(x) = ax^2 + bx + c$$

Donde: a, b y c son cualquier número real, con $(a \neq 0)$.

Figura 6 Gráfica de una función cuadrática en la variable x. La caída libre de un cuerpo representa un fenómeno natural que se estudia con este tipo de función.

Las funciones trigonométricas (principales y secundarias)

Las funciones trigonométricas principales son: $(\text{sen } x), (\text{cos } x), (\text{tan } x)$, donde la función seno está definida por $\text{sen}: R \rightarrow [-1, 1]$, es decir, el dominio de la función seno es el conjunto de los números reales y la imagen es el intervalo $[-1, 1]$. Además tiene amplitud 1 y es de período 2π.

$$f(x) = \text{sen}(x)$$
La función coseno está definida por $\cos: \mathbb{R} \rightarrow [-1, 1]$, es decir, el dominio de la función coseno es el conjunto de los números reales y la imagen es el intervalo $[-1, 1]$. Además tiene amplitud 1 y es de período 2π.

La función tangente está definida por $\tan: \mathbb{R} \setminus \left\{ (2k + 1)\frac{\pi}{2} | k \in \mathbb{Z} \right\} \rightarrow \mathbb{R}$, con amplitud no definida y de periodo π. En otras palabras, el dominio es el conjunto de los números reales sin contemplar los múltiplos enteros impares de pi medios, y la imagen son todos los reales.

Las funciones trigonométricas secundarias son cosecante, secante y cotangente:

$csc(x) = \frac{1}{\sin(x)}$, $sec(x) = \frac{1}{\cos(x)}$, $cot(x) = \frac{1}{\tan(x)}$, donde:

La función cosecante se define mediante $csc: \mathbb{R} \setminus \{k\pi | k \in \mathbb{Z}\} \rightarrow (-\infty, -1] \cup [1, \infty)$, con amplitud no definida y de periodo 2π, y se lee como: el dominio es el conjunto
de los números reales sin contemplar los múltiplos enteros de pi, y la imagen son los números reales sin contemplar el intervalo \((-1, 1)\).

La función secante se define mediante

\[
\sec : \mathbb{R} \setminus \left\{ (2k + 1)\frac{\pi}{2} | k \in \mathbb{Z} \right\} \to (-\infty, -1] \cup [1, \infty),
\]

con amplitud no definida y de periodo \(2\pi\).

La función cotangente se define mediante \(\cot : \mathbb{R} \setminus \{ k\pi | k \in \mathbb{Z} \} \to \mathbb{R}\), con amplitud no definida y de periodo \(\pi\).
La función valor absoluto

Se define de la siguiente manera: \(f(x) = |x| \), donde el valor absoluto se define mediante la ecuación \(|x| = \begin{cases} -x, & x < 0 \\ x, & x \leq 0 \end{cases} \) (véase la figura 7).

Ahora bien, si se define \(g(x) = |\text{sen}(x)| \), entonces se tiene un ejemplo del valor absoluto de una función cuya gráfica se presenta en la figura 8.
A partir de las llamadas operaciones básicas, el espectro de las funciones puede ser ampliamente generalizado, ya sea como producto de alguna aplicación o simplemente por el desarrollo de la matemática. Esto se describe puntualmente a través de los siguientes tipos de funciones.

La función escalonada

Cuando utilizamos un taxi para transportarnos el precio por el servicio queda establecido por el taxímetro. Para simplificar la situación, supongamos que el precio varía únicamente a partir del tiempo transcurrido, entonces la gráfica que representa la variación con respecto del costo por el servicio se observa en la siguiente figura:

![Gráfica de la función escalonada](image)

De esta forma entendemos que una función escalonada es aquella que al trazar la curva ésta no es continua (es decir, se despega el lápiz al dibujarla). El ejemplo más común de función escalonada es la llamada función parte entera, definida $f: R \rightarrow Z$, que toma un número real y da como resultado un número entero mayor o menor a ese número.

La función raíz cuadrada

Cuando tratamos con ecuaciones y funciones cuadráticas en ocasiones es necesario eliminar el exponente de la incógnita o variable x. En términos prácticos se ejemplifica a partir del siguiente procedimiento:
Si $x^2 = 16$, entonces $\sqrt{x^2} = \pm\sqrt{16}$, lo cual implica que: $x = \pm 4$.

Lo anterior nos lleva a interpretar la función raíz cuadrada: $f(x) = \sqrt{x}$, definida para toda x positiva o igual a cero ($\forall x \geq 0$), como una función inversa de $g(x) = x^2$ (ver la siguiente figura).

En general, la función identidad, $h(x) = x$ es el resultado de la composición de este tipo de funciones (inversas). Otro ejemplo importante para el estudio de los fenómenos naturales y procesos sociales se establece a continuación a través del siguiente tipo de funciones inversas entre sí.

La función exponencial y logaritmo natural

$f(x) = e^x$ y $g(x) = \ln x$, donde la función exponencial $f(x) = e^x$, se define $f : R \rightarrow (0, \infty)$, y en donde $e \approx 2.7182818284...$. A este número trascendente e irracional por naturaleza, se le conoce como el número de Euler en honor al matemático y físico suizo Leonhard Euler (1707-1783). Una definición común del número de Euler a partir del concepto de límites es: $e = \lim_{n \rightarrow \infty} \left(1 + \frac{1}{n}\right)^n$.

La función logaritmo natural (que es una función inversa de la exponencial) $g(x) = \ln x$, se define mediante $g : (0, \infty) \rightarrow R$, y en donde se cumple que: $\ln (e^x) = x$, o de forma equivalente: $e^{\ln(x)} = x$, para toda $x > 0$. El logaritmo de un número x es
el exponente y al cual hay que elevar la base para obtener x. Las gráficas de la función exponencial y logaritmo natural (inversas entre sí) se muestran en la siguiente figura.

![Gráfica de la función exponencial](image)

Figura 11 Gráfica de la función exponencial $f(x) = e^x$, la inversa (logaritmo natural) $g(x) = \ln x$, y la función identidad, $h(x) = x$, como resultado de la composición de funciones inversas.

Realiza los siguientes ejercicios. Si tienes acceso a una calculadora con funciones de gráfica, utiliza:

1. Trazas las gráficas de las siguientes funciones lineales:
 a) $y(x) = -3x + 2$
 b) $f(x) = x - 10$
 c) $g(x) = \frac{7}{2}$
 d) $h(x) = 2x$

2. Realiza las gráficas de las siguientes funciones cuadráticas y determina el vértice:
 a) $d(t) = -2t^2 + 7$
 b) $f(x) = x^2 - 10$
 c) $g(x) = -x^2 + x$
 d) $h(x) = x^2 + 2x + 1$

3. Realiza las gráficas de las siguientes funciones exponencial y logaritmo natural:
 a) $f(x) = -e^x$
 b) $g(x) = -\ln(x)$
c) \(h(x) = \ln(x^2) \)

d) \(t(x) = e^{x^2} \)

Recuerda verificar tus respuestas en el Apéndice 1

Construcción de la recta tangente a una curva, razón instantánea de cambio y la derivada de una función

El concepto de función matemática nos permite representar mediante una gráfica el comportamiento tanto cualitativo como cuantitativo de los diversos fenómenos naturales y procesos sociales. Precisamente el concepto de límite y de derivada de una función se deducen a partir del análisis de dichos comportamientos y cambios intrínsecos en la naturaleza. De la misma forma dichos conceptos permiten ampliar el horizonte de problemas o situaciones que se pueden abordar mediante la herramienta matemática y con el objetivo a priori de entender mejor nuestro entorno.

El problema de la construcción de rectas tangentes a curvas arbitrarias está íntimamente ligado con el problema de la determinación de la velocidad instantánea de un móvil, el cual se estudió ya en este libro. El acierto de establecer dicha relación se debe principalmente a Newton, quien abordó el problema de la construcción de rectas tangentes a una curva desde una forma diferente a la utilizada por los griegos. Newton se apoya en el uso de gráficas, las propiedades de las funciones y el análisis racional de los procesos infinitesimales implícitos. Si el problema consiste en determinar la recta tangente a una curva arbitraria entonces se debe centrar en la determinación de la pendiente o inclinación de dicha recta en un punto dado de la curva. Este razonamiento permitió desarrollar el método de análisis general, mismo que brinda la solución al problema de la construcción de tangentes en curvas arbitrarias. Lo anterior dio origen a la *derivada de una función* y por consiguiente a una de las herramientas más poderosas de las matemáticas, el llamado *Cálculo diferencial*.

Para saber más

Los matemáticos griegos abordaron el problema de la construcción de rectas tangentes a una curva arbitraria; para ellos resultó natural escoger construcciones de tangentes para las curvas cónicas (circunferencia, parábola, elipse e hipérbola), sin embargo el método utilizado no era un método de análisis general que ayudara en la determinación de cualquier recta tangente a una curva arbitraria, su método dependía de las características geométricas particulares de cada figura o curva estudiada.
A continuación se plantea un problema real cuyas repercusiones en la sociedad como en la naturaleza inciden de manera contundente. A partir de las herramientas matemáticas desarrolladas en secciones anteriores, la situación se analizará a lo largo de las diferentes secciones de esta unidad de trabajo, corroborando la importancia del cálculo matemático como generador de conocimiento y de método de análisis para comprender mejor nuestro entorno.

Problema: Cambios en la cantidad de gases invernadero en la atmósfera.

Debido a que existen distintas fuentes naturales de gases de efecto invernadero, las concentraciones de éstos han fluctuado a lo largo de toda la historia de la Tierra. Sin embargo, las actividades humanas, especialmente las asociadas con la Revolución Industrial, han aumentado las emisiones de gases de efecto invernadero drásticamente desde mediados del siglo XIX. Dichas actividades han alterado la mezcla natural de una amplia gama de gases que desempeñan un papel importante en la determinación del clima. Nuestro objetivo será analizar las alteraciones en los niveles de dióxido de carbono desde la era preindustrial.

Con base en la información que describe las mediciones directas de la concentración atmosférica de dióxido de carbono registradas desde 1958 hasta la fecha, mismas que puedes encontrar en el enlace anterior y en otros sitios de Internet, establece:

1. El modelo matemático a través del uso del concepto de función que describa los índices de contaminación y que permita identificar las tasas de variación de crecimiento de dichos índices en distintos períodos.

Este ejemplo representa la utilidad que tiene el cálculo matemático en el estudio de los fenómenos naturales y procesos sociales. Su estudio y tratamiento matemático se hará a lo largo de la presente unidad.

Recuerda verificar tus respuestas en el Apéndice 1

Descripción de la pendiente de la recta tangente a una curva, la derivada

La derivada de una función es una de las herramientas más poderosas en las matemáticas y las ciencias aplicadas. La definición de la derivada se puede abordar de dos formas diferentes, la primera es geométrica (como pendiente de la recta tangente a una curva) y la segunda es a partir de una aplicación física (como una tasa o razón instantánea de cambio).
Empezaremos examinando a la derivada de manera geométrica, es decir la definiremos como la pendiente de la recta tangente a un punto de la función. Intuitivamente decimos que una recta secante a una función es aquella que interseca al menos en 2 puntos a dicha función.

Recordemos que una recta tangente a una circunferencia es aquella que sólo la toca en un punto. Al generalizar esta idea al contexto de las funciones definimos a la recta tangente como aquella recta que toca la gráfica de una función en un sólo punto.

Supongamos que una función \(f \) está definida en un intervalo abierto que contiene el número real \(x \). La gráfica de \(y = f(x) \) y tres rectas secantes, \(S_1, S_2, y S_3 \) que pasan a
El movimiento como razón de cambio y la derivada

Cálculo en fenómenos naturales y procesos sociales

través de los puntos \(P(x, f(x)) \) y \(Q(x + \Delta x, f(x + \Delta x)) \) se ilustran en la figura 12. La línea recta punteada, \(t \), representa una posible recta tangente en el punto \(P \).

La línea recta punteada, \(t \), representa una posible recta tangente en el punto \(P \). Aho-

Como se puede observar en la figura anterior, cuando \(\Delta x \) (incremento en \(x \)) se acerca cada vez más y más a cero, las rectas secantes tienden a la recta tangente \(l \). Ahora bien, puesto que todas estas rectas pasan por el punto \(P(x, f(x)) \), sus ecuaciones se determinan encontrando las respectivas pendientes.

Observa que la pendiente de la recta secante mostrada en la gráfica está determinada por puntos \(P \) y \(P_1 \), cuyas coordenadas son respectivamente, \((x, f(x)) \) y \((x + \Delta x, f(x + \Delta x)) \).

De la gráfica se puede deducir que la pendiente de la secante está determinada por la tangente, y por otra parte la tangente está definida como cateto opuesto entre cateto adyacente, de donde tenemos que \((f(x + \Delta x) - f(x)) / \Delta x \) es igual al cateto opuesto.

Asimismo, tenemos que \(((x + \Delta x) - x) \) es el cateto adyacente, mismo que es igual a \(\Delta x \); por lo tanto la pendiente de \(S_1 \) es igual a \((f(x + \Delta x) - f(x)) / ((x + \Delta x) - x) \).

De la misma forma, la pendiente de las rectas secantes, \(m_{sec} \), que pasan por los puntos \(P(x, f(x)) \) y \(Q(x + \Delta x, f(x + \Delta x)) \) (véase figura 13, donde \(\Delta x \neq 0 \)) queda establecida mediante: \(m_{sec} = f(x + \Delta x)' f(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x} \).

Así pues, la recta tangente tendrá una pendiente \(m_{tan} \) cada vez más cercana a la pendiente de la recta secante \(m_{sec} \), conforme \(x + \Delta x \) tiende a \(x \), es decir, el
incremento se hace cada vez más pequeño ($\Delta x \to 0$). Este es el concepto de límite, una vez más. En otras palabras, se tiene que: $m_{\text{tan}} = \lim_{\Delta x \to 0} (m_{\text{sec}}) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$, siempre que el límite exista.

La variación de las pendientes de las secantes conforme el incremento se hace cada vez más pequeño ofrece en cada paso una mejor aproximación de la pendiente de la recta tangente que buscamos. Estas aproximaciones, como ya observamos en la primera sección de este libro al examinar la velocidad instantánea, son infinitas, por lo que este proceso también se conoce como razón instantánea de cambio. El límite anterior es uno de los conceptos fundamentales de cálculo. Se llama la derivada de la función f en el punto x.

Definición 1 La derivada de una función: Sea f una función definida en un intervalo abierto que contiene al punto x. La derivada de f en x, se escribe $f'(x)$, está dada por: $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$.

El símbolo $f'(x)$ se lee: f prima de x. La terminología $f'(x)$ existe, significa que el límite en la definición 1 existe. Si $f'(x)$ existe, se dice que la función f es diferenciable en x, o bien que la función f tiene derivada en x.

De esta forma, para determinar la ecuación de la recta tangente a una curva arbitraria se debe recordar que la ecuación de la recta, o función lineal, tiene la siguiente
forma: $y = f(x) = mx + b$, donde m es la pendiente de la recta y b es la ordenada al origen. A partir de la definición 1. ¿Cómo sería esta ecuación para el punto x_0?

Efectivamente, la ecuación sería: $m = f'(x_0)$.
¿Y si luego sustituyes en esa misma ecuación con el valor de x_0?

Claro, ahora tenemos esta ecuación: $y = f'(x_0)x + b$.
Ahora bien, la recta tangente que se desea determinar pasa por el punto (x_0, y_0), entonces este punto debe satisfacer la ecuación: $y_0 = f'(x_0)x_0 + b$.
Observa que si se despeja b de esa ecuación se tiene: $b = y_0 - f(x_0)x_0$.
Sustituye de nuevo en la ecuación original a b.

En efecto, lo que nos queda después de la sustitución es:

$$y = f'(x_0)x + y_0 - f'(x_0)x_0$$

y agrupando se obtiene: $y - y_0 = f'(x_0)(x - x_0)$.

Esta última ecuación no es otra cosa que la ecuación de una recta dado un punto y la pendiente (derivada). Es decir, la derivada de una función representa la pendiente de la recta que es tangente a la curva de dicha función en cierto punto.

Al principio de la sección dijimos que también se podía ver a la derivada como una tasa o razón instantánea de cambio, veamos por qué.

Consideremos una función arbitraria. Si el eje x representa la distancia y el eje y el tiempo, y ya que la velocidad es igual a la distancia entre el tiempo, entonces la interpretación, en este contexto, de las funciones es la siguiente:

La velocidad media es el cambio de la distancia cuando varía el tiempo, en otras palabras representa un incremento en la distancia entre un incremento en tiempo, es decir se puede aplicar el mismo análisis anterior de los incrementos cuando estudiamos la derivada.

Ahora bien, los incrementos van a darse tanto en la distancia como en el tiempo, y además se va a dar un proceso al límite. Teniendo todo esto en cuenta, la derivada se puede ver también como la velocidad instantánea de cualquier partícula en movimiento a lo largo de la gráfica de la función. Lo anterior es precisamente la interpretación física de la derivada de una función y nos da como resultado la pendiente de la recta tangente en cualquier punto de la curva.

A continuación se describen las formas que nos han permitido abordar uno de los conceptos fundamentales del cálculo, la derivada de una función.
i) Recta tangente: la pendiente de la recta tangente a la gráfica de f en el punto $(x, f(x))$ es $f'(x)$.

$m_{\text{tan}} = f'(x)$

ii) La velocidad instantánea: si un punto P se mueve sobre una línea de tal forma que su coordenada en el tiempo t es $d(t)$, entonces la velocidad instantánea en el tiempo t es $d'(t)$.

$$V_{\text{instantánea}} = \lim_{\Delta t \to 0} \frac{d(t + \Delta t) - dt}{\Delta t} = d'(t).$$

De esta forma se encontró un método de análisis general, la derivada, para la construcción de tangentes y para la determinación de la razón instantánea de cambio, en particular la velocidad instantánea.

Relación entre continuidad y diferenciabilidad de una función

En matemáticas el concepto de continuidad tiene en gran parte el mismo significado que en el uso cotidiano. Decir que una función es continua en $x = c$ significa que no existe interrupción en la gráfica de f en c, es decir, su gráfica no se rompe en dos y tampoco hay agujeros, saltos o brechas.

Definición de continuidad

Continuidad en un punto: Una función f es continua en c si se cumplen las tres condiciones siguientes:

1. $f(c)$ está bien definida.
2. $\lim_{x \to c} f(c)$ existe.
3. $\lim_{x \to c} f(x) = f(c)$.

Continuidad sobre un intervalo abierto: una función es continua sobre un intervalo abierto (a, b) si es continua en cada punto del intervalo. Una función que es continua sobre la recta real $(-\infty, \infty)$ es continua en todas partes.

En la siguiente figura se considera un intervalo abierto (a, b) que contiene un número real c. Si la función f está definida en todo el intervalo (a, b), (excepto posiblemente en c), y f no es continua en c, entonces se dice que f tiene una
discontinuidad en c. Las discontinuidades se clasifican en dos categorías: evitables y no evitables. Se dice que una discontinuidad en c es evitable, si f puede hacerse continua al definir (o volver a definir) f(c) de manera apropiada. Por ejemplo las funciones que se muestran en las figuras 14a y 14c tienen discontinuidades evitables en c, mientras que la función que se muestra en la figura 14b tiene una discontinuidad infinita (no evitable) en c.

Figura 14a, 14b y 14c. a) Discontinuidad evitable, f(c) no está definida. b) Discontinuidad no evitable o infinita, el \(\lim_{x \to c} f(x) \) no existe. c) Discontinuidad evitable, el \(\lim_{x \to c} f(x) \neq f(c) \).

Para comprender la continuidad sobre un intervalo cerrado, en primer lugar es necesario plantear un tipo de límite llamado límite lateral. El límite desde la derecha significa que x tiende a c desde valores mayores que c, este límite se denota como: \(\lim_{x \to c^+} f(x) = 0 \). (Límite desde la derecha.)
De manera análoga, el límite desde la izquierda significa que \(x \) tiende a \(c \) desde valores menores que \(c \), este límite se denota mediante: \(\lim_{x \to c^-} f(x) = L \). (Límite desde la izquierda.)

Los límites laterales son muy útiles al determinar el límite de funciones que comprenden radicales. Por ejemplo, si \(n \) es un número par, entonces: \(\lim_{x \to 0^+} \sqrt[2n]{x} = 0 \).

A continuación se da una función en la que el comportamiento de sus límites laterales llama mucho la atención.

¿La función tiene ambos límites laterales?, ¿cuál es su límite por la derecha?, ¿y cuál es su límite por la izquierda?

Escribe a continuación lo que se puede deducir en cuanto a la continuidad de una función cuando se da este comportamiento con sus límites laterales.

Si tu respuesta fue algo similar a esto: si sus límites laterales existen pero son diferentes, entonces la función puede ser discontinua; cuando el límite desde la izquierda no es igual al límite desde la derecha, el límite (bilateral) no existe, entonces vas muy bien, adelante.

El siguiente resultado presenta esto de manera más explícita, y su demostración se deduce directamente de la definición de límite lateral.

Teorema 0 Existencia de un límite

Sean \(f \) una función y \(c \) y \(L \) números reales. El límite de \(f(x) \), cuando \(x \) tiende a \(c \), es \(L \) si y sólo si \(\lim_{x \to c^-} f(x) = L \) y \(\lim_{x \to c^+} f(x) = L \).
El concepto de límite lateral permite extender la definición de continuidad hacia los intervalos cerrados. Básicamente una función es continua sobre un intervalo cerrado si es continua en el interior del intervalo y posee continuidad lateral en los puntos extremos. Esto se expresa de manera formal de la siguiente forma:

Definición de continuidad sobre un intervalo cerrado.

Una función \(f \) es continua sobre un intervalo cerrado \([a, b]\), si es continua sobre el intervalo abierto \((a, b)\) y \(\lim_{x \to a^+} f(x) = f(a) \) y \(\lim_{x \to b^-} f(x) = f(b) \).

La función \(f \) es continua desde la derecha en \(a \) y continua desde la izquierda en \(b \).

A partir de lo anterior y en términos del concepto fundamental llamado límite, la forma alternativa siguiente de la derivada de una función es útil en la investigación de la relación entre diferenciabilidad y continuidad.

Definición alterna de derivada. El límite de Pierre de Fermat (1601-1665).

La derivada de la función \(f \) en \(c \) es \(f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \), siempre que el límite exista (véase la figura 15).

![Figura 15](image)

Figura 15 Cuando el valor de \(x \) tiende al valor de \(c \), la recta secante tiende a la recta tangente.

Se debe observar que la existencia del límite en esta forma alternativa requiere que los dos límites laterales, \(\lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \) y \(\lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \) existan y sean iguales.
Estos límites laterales se conocen como derivadas desde la izquierda y desde la derecha, respectivamente. Se dice que f es diferenciable sobre el intervalo cerrado $[a, b]$ si es diferenciable sobre (a, b) y si la derivada desde la derecha, en a, y la derivada desde la izquierda, en b, existen.

Si la función no es continua en $x = c$, tampoco es diferenciable en $x = c$. Por ejemplo, la función mayor entero $f(x) = \lfloor x \rfloor$ no es continua en $x = 0$; por lo tanto no es diferenciable en $x = 0$ (véase la figura 18). El hecho se comprueba fácilmente al observar que

$$
\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{\lfloor x \rfloor - 0}{x} = \lim_{x \to 0^-} \left(\frac{1}{x} \right) = \infty \quad \text{(derivada desde la izquierda)}
$$

y

$$
\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{\lfloor x \rfloor - 0}{x} \quad \text{(derivada desde la derecha)}.
$$

Como se mostrará en el Teorema 1, la diferenciabilidad implica continuidad, sin embargo lo inverso no se cumple (ejemplo anterior). Es decir, es posible que una función sea continua en $x = c$ y no sea diferenciable en $x = c$. En los siguientes dos ejemplos se ilustra esta posibilidad.

Ejemplo

Gráfica de una función con un cambio brusco de dirección

La función $f(x) = |x - 3|$ mostrada en la figura 17 es continua en $x = 3$. Sin embargo, los límites laterales no son iguales:
Por lo tanto, la función \(f \) no es diferenciable en \(x = 3 \) y la gráfica de \(f \) no tiene recta tangente en el punto \((3, 0) \).

Ejemplo

Gráfica de una función con recta tangente vertical

La función \(f(x) = \sqrt{x} = x^{\frac{1}{2}} \) es continua en \(x = 0 \), como se muestra en la figura 18. Sin embargo, debido a que el límite \(\lim_{{x \to 0}} \frac{f(x)-f(0)}{x-0} = \lim_{{x \to 0}} x^{\frac{1}{2}} = \lim_{{x \to 0}} \frac{1}{x^{\frac{1}{2}}} = \infty \) es infinito, podemos concluir que la recta tangente a la función \(f(x) \) en el punto \(x = 0 \) es vertical (los límites laterales coinciden y son iguales a infinito). Por lo tanto, \(f \) no es diferenciable en \(x = 0 \).

(Continúa...)
A partir de los ejemplos anteriores se observa que una función no es diferenciable en cierto punto en el que su gráfica tenga un cambio brusco de dirección o una recta tangente vertical.

Teorema 1 La diferenciabilidad implica la continuidad.

Si la función \(y = f(x) \) es diferenciable en \(x = c \), entonces \(f \) es continua en \(x = c \).

Demostración: Se debe probar que la función \(f(x) \) es continua en \(x = c \) al demostrar que \(f(x) \) tiende a \(f'(x) \) cuando \(x \rightarrow c \). Para hacerlo, se aplica la diferenciabilidad de \(f \) en \(x = c \) y se considera el siguiente límite:

\[
\lim_{x \rightarrow c} \left[f(x) - f(c) \right] = \lim_{x \rightarrow c} \left[(x - c) \left(\frac{f(x) - f(c)}{x - c} \right) \right] = \left[\lim_{x \rightarrow c} (x - c) \right] \left[\lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c} \right].
\]

Se pueden separar los límites anteriores ya que se sabe que la función es derivable y por lo tanto el segundo límite existe: \(= (0) \left[f'(c) \right] = 0 \).
En virtud de que la diferencia \(f(x) - f(c) \) tiende a cero cuando \(x \to c \), se concluye que
\[
\lim_{x \to c} f(x) = f(c).
\]
Por lo tanto, la función \(f \) es continua en \(x = c \), lo que se quería demostrar.

Para ilustrar el resultado anterior, véase la gráfica 1 de la función identidad. Se recomienda que el análisis recién hecho se haga tomando en cuenta este ejemplo.

La relación entre la continuidad y la diferenciabilidad puede resumirse como sigue:

1. Si una función es diferenciable en \(x = c \), entonces es continua en \(x = c \). De este modo, la diferenciabilidad implica la continuidad.
2. Es posible que una función sea continua en \(x = c \) y no sea diferenciable en \(x = c \). Por lo tanto, la continuidad no implica la diferenciabilidad.

Véase la gráfica 2 de la función \(x^2 \), que ilustra los puntos anteriores.

En el caso de la función valor absoluto, dé por qué no es diferenciable, tanto de manera intuitiva como de forma analítica.

¿Qué se necesitaría para que fuese diferenciable?

Resulta evidente que aplicar de forma rutinaria la definición formal (límite) de la derivada de una función para su cálculo y determinación sería un absurdo, sobre todo si consideramos funciones complejas en su expresión analítica. Para evitar esto se desarrollan una serie de teoremas y propiedades a partir de dicha definición, lo que permite mediante algoritmos sencillos encontrar la derivada de una función.
A continuación se describen algunos de los resultados importantes que repercuten en el estudio y tratado óptimo de la derivada de una función.

Reglas básicas de derivación y razones de cambio

Al modelar fenómenos naturales y procesos sociales tratamos con funciones que representan con expresiones matemáticas la situación o problema real; la población de México (en millones de habitantes) se puede aproximar mediante la función lineal $P(t) = 1.65t + 48.2$, donde t son los años transcurridos después de 1970.

De acuerdo con este modelo lineal, responde las siguientes preguntas:

1. ¿Cuál fue el número de habitantes en México al comienzo del siglo XXI?, ¿coincide el resultado anterior con los obtenidos a partir del censo de población realizado en el año 2000 por el INEGI? Justifica tu respuesta. ¿Cuál fue el número de habitantes en el año 2010? ¿Coincide con los resultados del censo de población de 2010 del INEGI? ¿Cuál es el número de habitantes de México que el modelo predice para el año 2030?

Recuerda verificar tus respuestas en el Apéndice 1

Utiliza los resultados anteriores para graficar la función lineal, $P(t) = 1.65t + 48.2$. Ahora bien, haciendo uso de la definición (1) podemos determinar la derivada de la función $P(t)$; el ejercicio que debes hacer es: $P'(x) = \lim_{\Delta t \to 0} \frac{P(t+\Delta t) - P(t)}{\Delta t}$, donde: $P(t) = 1.65t + 48.2$ y $P(t+\Delta t) = 1.65(t+\Delta t) + 48.2$.

Pero, ¿qué representa la derivada $P'(t)$ en el contexto descrito? Una vez que se determina la derivada de la función lineal $P(t)$, se observa que el crecimiento de la población de México es constante e igual a 1.65 para todo tiempo. El hecho de tratar con una función lineal implica que su derivada es una constante, sin embargo el número de habitantes de México o de alguna otra población, se puede representar matemáticamente a partir de una función ahora cuadrática, pero que puede ser cúbica o de orden superior hasta n (número natural), e incluso a través de la función exponencial o logarítmico.

Entonces se requiere contestar la siguiente pregunta: ¿de qué forma será el crecimiento de dicha población para cada tipo de modelo matemático empleado?
Es decir, se requiere determinar la derivada de funciones en ocasiones del mismo
tipo y el hecho de utilizar la definición 1 para cada caso resulta un tanto tortuoso,
por ello se presentan a continuación las principales reglas de derivación
de funciones que permiten determinar las derivadas sin usar directamente la definición
de derivada utilizando límites.

Regla de la función constante

Teorema 2 Regla de la constante

La derivada de una función constante es 0. Es decir, si \(c \) es cualquier
número real, entonces \(f'(c) = \frac{d}{dx} [c] = 0 \).

Demostración: Sea \(f(x) = c \). Entonces, por la definición 1 de la derivada de una
función en términos de límite, se tiene:

\[
f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = 0 ,
\]

lo que se quería demostrar.

Este hecho puede corroborarse si se observa que una función constante es una
recta paralela al eje de las \(x \), por lo cual la recta tangente a esta función en cualquie-
ra de sus puntos es ella misma, luego entonces, para obtener el valor de la derivada
bastará con obtener la pendiente de esta recta. Pero recordemos que para obtener la pendiente
de una recta podemos tomar dos puntos distintos sobre la recta y utilizar la fórmula: Pendiente
\(= \frac{y_2 - y_1}{x_2 - x_1} \), donde \(y_1 \) y \(y_2 \) son la segunda coordena-
da de cada punto tomado de la recta, la cual
por ser la función constante sabemos que es la
misma, por lo tanto Pendiente \(= \frac{0}{(x_2 - x_1)} = 0 \),
puesto que los valores \(x_1 \) y \(x_2 \) son distintos si los
puntos son distintos.

Por lo tanto, la derivada de cualquier función
constante es 0.
Utilizando la definición 1 de la derivada por medio del límite, determina las derivadas de las siguientes funciones. Reflexiona qué patrones se observan. A partir de los resultados obtenidos escribe una conjetura acerca de la derivada de \(f(x) = x^n \).

a) \(f(x) = x^1 \)

b) \(f(x) = x^2 \)

c) \(f(x) = x^{\frac{1}{2}} \)

d) \(f(x) = x^{-1} \)

Ejemplos

Uso de la regla constante

a) Si \(f(x) = 8 \), entonces \(\frac{df}{dx} = f'(x) = 0 \).

b) Si \(y = -3 \), entonces \(y' = 0 \).

c) Si \(d(t) = k\pi^2 \), donde \(k \) es una constante, entonces \(d'(t) = 0 \).

\(f(x) = x^{\frac{1}{2}} = \sqrt{x} \)
Regla de la función potencia

Antes de enunciar la siguiente regla se muestra el procedimiento para desarrollar un binomio: \((x + \Delta x)^2 = x^2 + 2x\Delta x + (\Delta x)^2\) o \((x + \Delta x)^3 = x^3 + 3x^2\Delta x + 3x(\Delta x)^2 + (\Delta x)^3\).

Para un entero \(n > 0\), el desarrollo general (debido a Newton) de un binomio y que se utiliza en la demostración de la regla de la potencia es:

\[(x + \Delta x)^n = x^n + \frac{n(n-1)x^{n-2}}{2}(\Delta x)^2 + \frac{n(n-2)x^{n-3}}{6}(\Delta x)^3 + \ldots + (\Delta x)^n\]

Teorema 3 Regla de la potencia

Si \(n\) es un número racional, entonces la función \(f(x) = x^n\) es diferenciable y

\[
f'(x) = \frac{d}{dx}[x^n] = nx^{n-1}.
\]

Para que la función \(f\) sea diferenciable en \(x = 0\), el número \(n\) debe ser tal que \(x^{n-1}\) esté definido sobre un intervalo que contenga a 0.

Demostración: si \(n\) es un entero positivo mayor que 1, entonces por el desarrollo del binomio y la aplicación de la definición 1 obtenemos:
Lo cual demuestra el caso para un entero $n \geq 1$. Has ahora como ejercicio la demostración para $n - 1$, para n entero negativo y para n cualquier número racional.

Ejemplos

Uso de la regla de la potencia

a) Si $f(x) = x^3$, entonces $\frac{df}{dx} = f'(x) = 3x^2$.

b) Si $y = -\frac{1}{x^2}$, entonces $y' = \frac{dy}{dx} = \frac{d}{dx}[-x^{-2}] = 2x^{-3} = \frac{2}{x^3}$.

c) Determinar la pendiente de la recta tangente a la curva $g(x) = x^4$ en el punto $x = 1$. Solución: Como $g'(x) = 4x^3$, entonces para $x = 1$ se tiene que el valor de la pendiente es $m = g'(1) = 4(1)^3 = 4$.

Regla del múltiplo constante de una función

Primero observemos el caso trivial en donde la constante k es igual a 0, entonces $k \cdot f(x) = 0$, $f(x) = 0$, por lo cual es una función constante, y por el teorema anterior sabemos que su derivada existe y es 0. Ahora para ejemplificar este hecho tomemos la función $f(x) = x$ y una constante $k \neq 0$ y sea la función $g(x) = k \cdot f(x) = k \cdot x$. Como estas funciones son líneas rectas, igual que en el caso anterior, sabemos que el valor de su derivada es igual a la pendiente de la recta. Entonces en el caso de la función f sabemos que esta pendiente es 1. En el caso de la función g tenemos que la pendientes es igual a:

$$\frac{(kx^2 - kx)}{(x^2 - x)} = k$$

Por lo que multiplicar una función (que ya es derivable) por una constante distinta de cero solamente cambia el valor de las pendientes en cada punto multiplicándolo por la constante dada.

Analicemos una función cuadrática.

Completa la tabla sustituyendo los valores y grafica la función $f(x) = 4x^2$:
¿La función $4x^2$ es diferenciable en todos sus puntos?, ¿se preserva la continuidad en la función? Justifica tus respuestas.

¿Cómo varía la pendiente en cada uno de los puntos de x^2 con respecto a $4x^2$? ¿Qué podrías afirmar acerca de la pendiente de las tangentes de la función $4x^2$ con respecto de las tangentes en la función x^2 que anteriormente viste?

Teorema 4 Regla del múltiplo constante

Si $y = f(x)$ es una función diferenciable y k es un número real, entonces la función $k \cdot f(x)$ también es diferenciable y $y'(x) = \frac{d}{dx}[k \cdot f(x)] = k \cdot f'(x)$.

\[
 \begin{array}{|c|c|}
\hline
 x & 4x^2 \\
\hline
 -3 & 36 \\
 -2 & \\
 -1 & \\
 0 & \\
 1 & \\
 2 & \\
 3 & \\
\hline
\end{array}
\]
Demostración: de la aplicación de la definición (1) obtenemos:

\[y'(x) = \lim_{\Delta x \to 0} \frac{k f(x + \Delta x) - k f(x)}{\Delta x} = k \left(\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \right) = k \cdot f'(x) \]

De manera informal, la regla del múltiplo constante expresa que las constantes pueden extraerse como factor del proceso de derivación, incluso si aparecen en el denominador. Ejemplos. Uso de la regla del múltiplo constante.

a) Si \(g(t) = 4t^2 \), entonces \(g'(t) = \frac{dg}{dt} = \frac{d}{dt}[4t^2] = 4 \cdot \frac{d}{dt}[t^2] = 4(2)t = 8t \).

b) Si \(f(x) = \frac{3}{x^2} \), entonces \(f'(x) = \frac{df}{dx} = \frac{d}{dx}\left[3x^{-2}\right] = 3 \cdot \frac{d}{dx}[x^{-2}] = 3 \cdot \left(-2\right)x^{-3} = -\frac{6}{x^3} \).

c) Si \(y = \frac{1}{2\sqrt[3]{x^2}} \), entonces \(y' = \frac{dy}{dx} = \frac{d}{dx}\left[\frac{1}{2}x^{-\frac{2}{3}}\right] = \frac{1}{2} \cdot \frac{d}{dx}\left[x^{-\frac{2}{3}}\right] = \frac{1}{2} \cdot \left(-\frac{2}{3}\right)x^{-\frac{5}{3}} = -\frac{1}{3x^\frac{5}{3}} \).

Regla de la suma y diferencia de funciones

Teorema 5 Regla de la suma y resta (diferencia)

La suma (o la resta) de dos funciones diferenciables es diferenciable y la derivada de la suma es la suma (o resta) de sus derivadas:

\[\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x) \]

Demostración: de la aplicación de la definición 1 para la regla de la suma de funciones (la resta se prueba de forma similar) obtenemos:

\[\frac{d}{dx}[f(x) + g(x)] = \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) + g(x + \Delta x) - f(x) - g(x)}{\Delta x} \right] \]

\[= \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{g(x + \Delta x) - g(x)}{\Delta x} \right] \]

\[= \frac{f(x + \Delta x) - f(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = f'(x) + g'(x) \]
La regla de suma y resta se extiende para cualquier número finito de funciones. Por ejemplo, si \(F(x) = f(x) + g(x) + h(x) - r(x) - s(x) \), entonces
\[
F'(x) = f'(x) + g'(x) + h'(x) - r'(x) - s'(x).
\]

Ejemplos

Uso de la regla de la suma y resta

a) Si \(g'(t) = 3t^2 - 8t + 2 \), entonces \(g'(t) = 3t^2 - 8t + 2 \)

b) Si \(f(x) = \frac{3x^2}{2} - 5x \), entonces \(f'(x) = 3x - 5 \).

c) Si \(y = \frac{-2x^4}{3} + 2x^3 - x \), entonces \(y' = \frac{-8}{3}x^3 + 6x^2 - 1 \).

Derivadas de las funciones seno y coseno

Para demostrar las reglas de derivación de las funciones seno y coseno se utilizan los siguientes resultados: \(\lim_{\Delta x \to 0} \frac{\sin(\Delta x)}{\Delta x} = 1 \) y \(\lim_{\Delta x \to 0} \frac{1 - \cos(\Delta x)}{\Delta x} = 0 \)

Teorema 6 Derivadas de las funciones seno y coseno

\[
\frac{d}{dx} \left[\sin(x) \right] = \cos(x)
\]

\[
\frac{d}{dx} \left[\cos(x) \right] = -\sin(x)
\]

Demostración: a partir de la definición de derivada de una función se tiene:

\[
\frac{d}{dx} \left[\sin(x) \right] = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin(x)}{\Delta x}
\]

\[
= \lim_{\Delta x \to 0} \frac{\sin(x) \cos(\Delta x) + \cos(x) \sin(\Delta x) - \sin(x)}{\Delta x}
\]

\[
= \lim_{\Delta x \to 0} \frac{\cos(x) \sin(\Delta x) - \sin(x)[1 - \cos(\Delta x)]}{\Delta x}
\]

\[
= \lim_{\Delta x \to 0} \left[\cos(x) \left(\frac{\sin(\Delta x)}{\Delta x} \right) - \sin(x) \left(\frac{1 - \cos(\Delta x)}{\Delta x} \right) \right]
\]

\[
= \cos(x)(1) - \sin(x)(0) = \cos(x)
\]
Esta regla de derivación se muestra gráficamente en la figura 19. Se debe observar que para cada \(x \) la pendiente de la curva seno es igual al valor del coseno. La demostración de la regla para derivar la función coseno elaborala como ejercicio.

De la misma forma que en las reglas anteriores, pero con técnicas menos directas también se demuestran las siguientes dos reglas:

Regla del producto de funciones

Teorema 7 Regla del producto

El producto de dos funciones diferenciables \(f \) y \(g \) es, en sí mismo, diferenciable. Más aún, la derivada de \(fg \) es la primera función multiplicada por la derivada de la segunda, más la segunda función multiplicada por la derivada de la primera.

\[
\frac{d}{dx} f(x)g(x) = f(x)g'(x) + g(x)f'(x).
\]

Demostración: Algunas demostraciones matemáticas, como la que se realiza para la regla de la suma de funciones, son directas. Otras comprenden pasos de ingenio y habilidad matemática. En esta demostración se utiliza uno de estos pasos —restar y sumar la misma cantidad—, el cual se destaca a simple vista.

\[
\frac{d}{dx} f(x)g(x) = \lim_{\Delta x \to 0} \frac{[f(x + \Delta x)g(x + \Delta x)] - [f(x)g(x)]}{\Delta x}
\]
EL MOVIMIENTO COMO RAZÓN DE CAMBIO Y LA DERIVADA

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x + \Delta x)g(x) + f(x + \Delta x)g(x) - f(x)g(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left[f(x + \Delta x) \frac{g(x + \Delta x) - g(x)}{\Delta x} + g(x) \frac{f(x + \Delta x) - f(x)}{\Delta x} \right]$$

$$= \lim_{\Delta x \to 0} \left[f(x + \Delta x) \frac{g(x + \Delta x) - g(x)}{\Delta x} \right] + \lim_{\Delta x \to 0} \left[g(x) \frac{f(x + \Delta x) - f(x)}{\Delta x} \right]$$

$$= \lim_{\Delta x \to 0} f(x + \Delta x) \left[\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} \right] + \lim_{\Delta x \to 0} g(x) \left[\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \right]$$

$$= f(x)g'(x) + g(x)f'(x)$$

La regla del producto se extiende para productos que comprendan más de dos factores. Por ejemplo, si f, g y h son funciones diferenciables de x, entonces

$$\frac{d}{dx} [f(x)g(x)h(x)] = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x).$$

Ejemplos

Uso de la regla del producto

a) Si $h(t) = (t+t^2)(5-4t)$, entonces

$$h'(t) = (t+t^2) \frac{d}{dt}[5-4t] + (5-4t) \frac{d}{dt}(t+t^2)$$

$$= (t+t^2)(-4) + (5-4t)(1+2t)$$

$$= 4t-4t^2 + (-5+10t+4t-8t^2)$$

$$= -12t^3 + 18t - 5$$

b) Si $f(x) = x \sin(x)$, entonces

$$f'(x) = \frac{d}{dx} \left[x \sin(x) \right] + \sin(x) \frac{d}{dx} [x]f'(x)$$

$$= x \cos(x) + \sin(x) \cdot 1 \cdot f'(x)$$

$$= x \cos(x) + \sin(x)$$

c) Si $y = 5x \cos(x) - 5 \sin(x)$, entonces

$$y'(x) = 5x \frac{d}{dx} \left[\cos(x) \right] + \cos(x) \frac{d}{dx} [5x] - 5 \frac{d}{dx} \left[\sin(x) \right]$$

$$= 5x(-\sin(x)) + \cos(x)(5) - 5 \cos(x)$$

$$= -5x \sin(x)$$
Regla del cociente de funciones

Teorema 8 Regla del cociente

El cociente de \(\frac{f}{g} \) de dos funciones diferenciables \(f \) y \(g \) es, en sí mismo diferenciable para todos los valores de \(x \) para los que \(g(x) \neq 0 \). Más aún, la derivada de \(\frac{f}{g} \) se expresa por el denominador multiplicado por la derivada del numerador, menos el numerador multiplicado por la derivada del denominador, todo dividido por el cuadrado del denominador.

\[
\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}
\]

Demostración: así como en la demostración del teorema 7 la clave de ésta es sumar y restar la misma cantidad, de la aplicación de la definición 1 para la regla del cociente obtenemos:

\[
\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{g(x + \Delta x) - g(x)}
\]

\[
= \lim_{\Delta x \to 0} \frac{g(x)f(x + \Delta x) - f(x)g(x + \Delta x)}{(\Delta x)g(x)g(x + \Delta x)}
\]

\[
= \lim_{\Delta x \to 0} \frac{g(x)[f(x + \Delta x) - f(x)]}{(\Delta x)g(x)g(x + \Delta x)}
\]

\[
= \lim_{\Delta x \to 0} \frac{g(x)[f(x + \Delta x) - f(x)]}{(\Delta x)} - \frac{f(x)[g(x + \Delta x) - g(x)]}{(\Delta x)}
\]

\[
= \lim_{\Delta x \to 0} \frac{g(x)[f(x + \Delta x) - f(x)]}{g(x)g(x + \Delta x)} - \frac{f(x)[g(x + \Delta x) - g(x)]}{g(x)g(x + \Delta x)}
\]

\[
= g(x) f'(x) - f(x) g'(x)
\]

\[
\left[g(x) \right]^2
\]
El movimiento como razón de cambio y la derivada

Cálculo en fenómenos naturales y procesos sociales

Derivadas de las funciones trigonométricas

A partir del teorema 6, es decir, del conocer las derivadas de las funciones seno y coseno, es posible determinar las derivadas de las cuatro funciones trigonométricas restantes.

Teorema 9 Derivadas de funciones trigonométricas

\[
\frac{d}{dx} \tan(x) = \sec^2(x)
\]

\[
\frac{d}{dx} \cot(x) = -\csc^2(x)
\]

\[
\frac{d}{dx} \sec(x) = \sec(x) \tan(x)
\]

\[
\frac{d}{dx} \csc(x) = -\csc(x) \cot(x)
\]

Demostración: A partir de la regla del cociente y considerando que \(\tan(x) = \frac{\sin(x)}{\cos(x)} \), se obtiene:

\[
\frac{d}{dx} \tan(x) = \frac{\cos(x) \cos(x) - (\sin(x))(-\sin(x))}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = \sec^2(x)
\]
La demostración de las tres restantes partes del teorema realizadas ahora como ejercicio.

Regla de la cadena o derivada de una función compuesta

Básicamente la regla de la cadena expresa que si la función y cambia $\frac{du}{dx}$ veces tan rápido como u, y dicha función u cambia $\frac{du}{dx}$ veces tan rápido como x, entonces la función y cambia $\left(\frac{dy}{du}\right)\left(\frac{du}{dx}\right)$ veces tan rápido como x.

Teorema 10 Regla de la cadena

Si $y = f(u)$ es una función diferenciable de u y $u = g(x)$ es una función diferenciable en x, entonces $y = f(g(x))$ es una función diferenciable de x y

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

O de forma equivalente:

$$\frac{dy}{dx} = \frac{d}{dx} \left[f(g(x)) \right] = f'(g(x)) g'(x)$$

Demostración: sea $h(x) = f(g(x))$. Entonces, si se aplica la forma alternativa de la derivada de una función, es necesario demostrar que para $x = c$, $h'(c) = f'(g(c)) g'(c)$. En esta demostración se aplica una técnica similar a la empleada anteriormente, sólo que ahora se multiplica y se divide por la misma cantidad (siempre distinta de cero). Se debe observar que, en virtud de que la función g es diferenciable, también es continua y se concluye que $g(x) \to g(c)$ cuando $x \to c$. Supongamos que $g(x) \neq g(c)$ para todo valor de $x \neq c$, entonces: $h'(c) = \lim_{x \to c} \frac{f(g(x)) - f(g(c))}{x - c},$

$$= \lim_{x \to c} \left[\frac{f(g(x)) - f(g(c))}{g(x) - g(c)} \right] \left(\frac{g(x) - g(c)}{x - c} \right),$$

$$g(x) \neq g(c) = \lim_{x \to c} \left[\frac{f(g(x)) - f(g(c))}{g(x) - g(c)} \right] \left[\lim_{x \to c} \frac{g(x) - g(c)}{x - c} \right] = f'(g(c)) g'(c)$$
Cuando se aplica la regla de la cadena es útil pensar que la función compuesta \(f \circ g \) tiene dos partes: una interior y otra exterior: \(y = f(g(x)) = f(u) \), donde \(u = g(x) \) es la función interior, mientras que la función \(f \) es la exterior. Así, la derivada de \(y = f(u) \) es la derivada de la función exterior (en la función interior \(u \)) multiplicada por la derivada de la función interior: \(y' = f'(u)u' \).

Un caso especial de la regla de la cadena se conoce como la \textit{regla general de la potencia} y se enuncia a continuación:

Si \(y = [u(x)]^n \), donde \(u \) es una función diferenciable de \(x \) y \(n \) es un número racional, entonces: \(\frac{dy}{dx} = n[u(x)]^{n-1} \frac{du}{dx} \), o de forma equivalente, \(\frac{d}{dx} [u^n] = nu^{n-1}u' \).

Esta sección termina a través de la siguiente tabla que describe un resumen de las principales reglas de derivación estudiadas hasta el momento. Para adquirir habilidad en la derivación de funciones, el estudiante debe realizar los ejercicios propuestos al final de la unidad y en la medida de lo posible memorizar las reglas descritas a continuación.

\[\begin{array}{|c|c|}
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{d}{dx} [k] = 0)</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{d}{dx} [x] = 1)</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{d}{dx} [k \cdot u] = k \cdot u')</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{d}{dx} [u \pm v] = u' \pm v')</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{d}{dx} [u \cdot v] = u \cdot v' \cdot v' + \cdot u')</td>
</tr>
<tr>
<td>6</td>
<td>(\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v \cdot u' - u \cdot v'}{v^2})</td>
</tr>
<tr>
<td>7</td>
<td>(\frac{d}{dx} [u \circ v] = \frac{d}{dx} [u(v)] = u'(v) \cdot v')</td>
</tr>
<tr>
<td>8</td>
<td>(\frac{d}{dx} [u^k] = k u^{k-1} \cdot u')</td>
</tr>
<tr>
<td>9</td>
<td>(\frac{d}{dx} [</td>
</tr>
<tr>
<td>10</td>
<td>(\frac{d}{dx} [k^u] = k^u \ln k \cdot u')</td>
</tr>
<tr>
<td>11</td>
<td>(\frac{d}{dx} [u^v] = v u^{v-1} \cdot u' + u^v \ln u \cdot v')</td>
</tr>
<tr>
<td>12</td>
<td>(\frac{d}{dx} [\log_k u] = \frac{u'}{u \cdot \ln k})</td>
</tr>
<tr>
<td>13</td>
<td>(\frac{d}{dx} [\ln u] = \frac{u'}{u})</td>
</tr>
<tr>
<td>14</td>
<td>(\frac{d}{dx} [e^u] = e^u \cdot u')</td>
</tr>
</tbody>
</table>
\]
Problema: Cambios en la cantidad de gases invernales en la atmósfera en tiempos recientes.

Las mediciones directas de la concentración atmosférica de CO₂ se han registrado desde 1958. Desde aquel momento hasta hoy (visitar enlace recomendado) la concentración ha aumentado de 315 partes por millón a 380 ppm (en 2006).

El gráfico 3 muestra la historia de las concentraciones atmosféricas de dióxido de carbono directamente medido en Mauna Loa, Hawaii entre 1958 y el año 2009. Esta curva es conocida como la curva de Keeling, en honor del investigador Charles David Keeling miembro del Instituto Scripps de Oceanografía, quien fue la primera persona en realizar frecuentes mediciones periódicas de la concentración de CO₂. Además la curva de Keeling es la evidencia de que el ser humano ha contribuido a incrementar los gases del efecto invernadero, los cuales se cree que son la causa del calentamiento global. La fluctuación anual en el dióxido de carbono se debe a las variaciones que presenta la absorción de dióxido de carbono en la tierra de las plantas y con respecto a las estaciones del año. Dado que más bosques se concentran en el hemisferio norte que en el hemisferio sur, durante el verano del hemisferio norte se elimina más dióxido de carbono de la atmósfera que en el verano del
hemisferio sur. Este ciclo anual se muestra en el recuadro inserto en el gráfico 3, a través del promedio de la concentración de CO$_2$ de cada mes en correspondencia con los años registrados. Este ciclo se conoce como la respiración de la Tierra.

La curva de Keeling muestra los datos de las mediciones directas de la concentración atmosférica de CO$_2$ de 1958 al año 2009 (crédito: Robert A. Rohde) y el proyecto de arte del calentamiento global (Global Warming Art Project). Para examinar la concentración de CO$_2$ en la atmósfera antes de 1958, los científicos se basan en datos obtenidos de las burbujas atrapadas en los hielos polares. Aunque no son tan precisas como las mediciones directas en la atmósfera, estos datos se correlacionan bien con las mediciones directas durante los períodos en que los dos conjuntos de datos se superponen, lo que nos proporciona la confianza de que los registros obtenidos del hielo son extremadamente exactos. Los registros más antiguos de los núcleos (burbujas de aire) de hielo ahora se extienden hasta alrededor de un millón de años. Durante los últimos miles de años, hasta el último par de siglos, la concentración de CO$_2$ promedio rondaba en el rango de 250 a 280 ppm. Los registros recabados de los núcleos de hielo indican que la concentración de CO$_2$ no había superado las 300 ppm en por lo menos los últimos 300,000 años, como se muestra en el gráfico 4. Estudios basados en registros geológicos parecen indicar que la última vez que la concentración de CO$_2$ era tan alta como lo es hoy en día, era hace unos 20 millones de años.

El gráfico 4 muestra las variaciones en la concentración de CO$_2$ en la atmósfera durante los últimos 400 mil años, como medida a partir de los registros obtenidos en las burbujas de aire en los hielos polares. Desde la Revolución Industrial, alrededor de 1800, la quema de combustibles fósiles ha provocado un drástico crecimiento de CO$_2$ en la atmósfera, llegando a niveles sin precedentes. Este crecimiento exponencial se ha identificado como una de las causas principales del calentamiento global.
El gráfico 5, que incluye tanto medidas directas como los datos obtenidos de las burbujas de aire en los hielos polares, muestra que los niveles de dióxido de carbono han ido en constante aumento desde al menos 1850, y han aumentado considerablemente a partir de 1950 (línea curva en color azul). Este aumento corresponde a un periodo de crecimiento dramático de las emisiones de CO$_2$ por la quema de combustibles fósiles que ha utilizado el ser humano a partir de la Revolución Industrial. De esta forma se hace evidente que la concentración atmosférica de CO$_2$ ha aumentado cerca de 35% por encima de los niveles preindustriales (desde 280 hasta 380 ppm).

Este gráfico muestra las concentraciones promedio mundiales de dióxido de carbono durante un periodo de 250 años desde 1750 hasta 2000. La línea azul indica
las mediciones atmosféricas directas. Los puntos de colores indican los datos reco-
gidos en los núcleos de hielo, cada color representa un núcleo de hielo de diferentes
puntos de muestreo.

A partir de la información anterior, podemos utilizar el concepto de función
para modelar el problema. Si la concentración de dióxido de carbono en la atmós-
f-era (índices de contaminación) se representa por la función \(f(t) = e^{0.0013t+3.17} \), en-
tonces la derivada de dicha función es el crecimiento instantáneo de la concentración
de CO\(_2\) (tasa de variación de los índices de contaminación) con respecto al tiempo.

Análisis de información.

Problema: Cambios en la cantidad de gases invernadero en la atmósfera en
tiempos recientes.

A continuación se presenta el problema planteado previamente, que permite el es-
tudio de un fenómeno natural y proceso social a partir del uso adecuado de herramien-
tas matemáticas descritas con anterioridad.

A partir de la información anterior podemos utilizar el concepto de función para el
análisis de la información del problema de la actividad 8; la función (modelo matemá-
tico) que representa los índices de contaminación es la siguiente: \(f(t) = e^{0.0013t+3.17} \), don-
de \(t \) es el tiempo en años y \(f(t) \) se mide en ppm (partes por millón).

La gráfica de la función se representa a continuación:

Más información en...

Visita el enlace que te podrá dar mayores elementos: Disponible: http://www.windows2uni-
verse.org/earth/climate/
greenhouse_effect_gases.
html. [Consulta 06/12/2011].
Responde a las siguientes preguntas haciendo uso de tus aprendizajes hasta este momento.

1. ¿Qué es el efecto invernadero?

2. ¿Cuáles son los gases que ocasionan el efecto invernadero?

3. ¿Es un fenómeno natural o un problema ocasionado por las actividades humanas? Explíca tu respuesta.

4. Cuál es la razón por la que el CO₂ es considerado un gas invernadero?

5. ¿Cuáles son las principales fuentes naturales de emisión de CO₂ a la atmósfera?

6. ¿Cuáles son las principales fuentes antropogénicas de emisión de CO₂ a la atmósfera?

7. ¿Qué consecuencias se pueden presentar si la tendencia de la concentración de CO₂ en la atmósfera sigue en aumento?

8. ¿Cuál es el papel de la Revolución Industrial en el aumento de la concentración de dióxido de carbono?

9. ¿En qué momento histórico se presenta un aumento desmedido en los índices de concentración de CO₂ y cuáles eran las actividades humanas que en ese momento se desarrollaron?
10. Si el CO\(_2\) sigue aumentando de manera desmedida, ¿cuáles serán las consecuencias para la vida humana para el año 2015?

11. ¿Qué medidas emplearías para evitar el aumento de CO\(_2\) en la atmósfera?

Con base en lo estudiado durante la unidad responde las siguientes preguntas.

1. Obtén la tasa de variación de los índices si \(t = 2012 \); asimismo, compara la tasa de variación del año 1880 (periodo de la 2\ª Revolución Industrial) con la de 1940 (3\ª Revolución Industrial) y da el porcentaje en que se incrementó. Obtén el punto o área más crítico para determinar la fecha en donde se logra apreciar un aumento significativo de CO\(_2\) y en el cual disminuyó. Y calcula la rapidez con la cual el aumento de CO\(_2\) comenzó a mostrar consecuencias incidentes en la calidad de vida del ser humano.

2. Elabora un resumen de cuando mucho dos cuartillas, donde la idea central sea la propuesta de una solución alternativa, desde un punto de vista social, con base en la información obtenida acerca de este fenómeno.

Recuerda verificar tus respuestas en el Apéndice 1

Comportamiento de funciones, puntos críticos, máximos y mínimos

Con las herramientas que hasta el momento has desarrollado podemos abordar con mayor capacidad el comportamiento de las funciones; también podemos resolver problemas de optimización derivados de situaciones técnicas, físicas, tecnológicas o simplemente numéricas que puedan ser representados por curvas o en general por gráficas de funciones.

Un aspecto central en el análisis del comportamiento de las funciones tiene que ver con los conceptos de valores extremos, la concavidad, sus puntos críticos y si la función es creciente o decreciente.

En el estudio de las parábolas por ejemplo la concavidad se localiza a partir del vértice, determinando si dicha parábola abre hacia abajo, hacia arriba, hacia la derecha o hacia la izquierda.

En cualquiera de estos casos las pendientes de las rectas tangentes, es decir la derivada evaluada en el vértice es igual a cero y nos indican un cambio de comportamiento cualitativo y cuantitativo en la trayectoria descrita por la representación gráfica de la función.
Para ejemplificar y definir los conceptos más importantes en el comportamiento de funciones matemáticas consideraremos a continuación el planteamiento y solución de dos problemas que no sólo incentivan la definición del concepto de derivada de una función, sino que en determinado tiempo motivaron el desarrollo tecnológico; su estudio permite describir los alcances de la aplicación directa del cálculo diferencial. El primero de los problemas parte del estudio de la caída libre de un cuerpo o proyectil, fenómeno natural descrito en secciones anteriores.

El segundo hace referencia a un problema de optimización de recursos; maximizar el volumen de una caja. Éste representa un ejemplo de las situaciones que al tratarse y resolverse con cálculo matemático permitió desarrollar la industria a partir del siglo XVIII en Gran Bretaña y Europa continental.

Problemas referentes al comportamiento de funciones y el uso de la derivada

Ejemplo 1

Comportamiento de funciones. La altura máxima y velocidad de impacto de un proyectil

El objetivo es determinar la velocidad de impacto con el suelo y la altura máxima que alcanzará un proyectil lanzado verticalmente desde el nivel del piso con una velocidad inicial de 323.4 m/s. Después de hacer su recorrido, ¿se impactará el proyectil con el suelo a la misma velocidad con la que inició su recorrido?, ¿o piensas que la velocidad de impacto con el suelo es mayor o menor a la velocidad inicial? Justifica tus respuestas y compara con el resultado obtenido a continuación.

De acuerdo con Galileo Galilei y la ecuación 1, la función que describe la trayectoria de dicho proyectil está dada por:

$$d(t) = 4.9t^2 + 323.4t$$

Y su derivada es:

$$d'(t) = \frac{d}{dt}[d] = -9.8t + 323.4$$

Con lo estudiando anteriormente, ¿qué puedes decir respecto a lo que representa la derivada en cualquier punto de la curva descrita por la función?

La respuesta correcta debe ser: es precisamente la velocidad instantánea del proyectil en todo tiempo. Si así respondiste, sigues haciéndolo muy bien.

A partir de la gráfica de la figura 20 se observa que el vértice de la parábola representa la altura máxima que alcanza dicho proyectil, a dicho punto se le llama máximo de la función, ¿qué característica tiene este punto?

Efectivamente, ahí la recta tangente a la curva es horizontal, es decir, la derivada es igual a cero.

(Continúa...)
Observa lo que pasa a la izquierda del valor t_v del vértice, ¿cómo son las pendientes de las rectas tangentes?, ¿qué implica que sean de esa forma?

Estamos de acuerdo si respondiste que son positivas e implica que la función es creciente.

Por el contrario, a la derecha de este punto t_v del vértice, ¿cómo es el comportamiento de las pendientes y qué significa que se comporten así?

Así es, las pendientes de las rectas tangentes son negativas lo cual implica que es una función decreciente.

Del análisis anterior puede deducirse entonces cuándo una función es creciente o decreciente. Exprésalo con tus propias palabras.

Si la derivada siempre es positiva (o negativa) entonces la función es creciente (o decreciente) respectivamente.

Por lo tanto, si en el problema planteado hacemos la derivada igual a cero entonces obtenemos la coordenada t_v del vértice, de modo que podemos determinar la altura máxima que alcanza el proyectil. Es decir, $d'(t) = 0$

$$-9.8t + 323.4 = 0 \Rightarrow t_v = \frac{-323.4}{-9.8} = 33 \text{ s}.$$

De lo que concluimos que la altura o distancia máxima es:

$$d(t_v) = d(33) = -4.9(33)^2 + 323.4(33) \Rightarrow d(33) = -5,336.1 + 10,672.2 = 5,336.1 \text{ m}.$$
Es decir, el proyectil alcanza su altura máxima de 5,336.1 metros en 33 segundos, que no es otra cosa que las coordenadas del vértice de la parábola $V(t, d(t))=(33, 5336.1)$.

Por último, para determinar la velocidad de impacto del proyectil con el suelo se evalúa la derivada de la función en el tiempo de choque (una de las dos soluciones de la función distancia y cuadrática), identificado por t_2 en la figura 20.

Para encontrar las soluciones t_1 y t_2, utilizamos la fórmula general de segundo grado:

$$t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

A partir de la función distancia del proyectil se tiene que: $a = -4.9$, $b = -323.4$ y $c = 0$. Sustituyendo valores tenemos:

$$t_{1,2} = \frac{-(-323.4) \pm \sqrt{(-323.4)^2 - 4(-4.9)(0)}}{2(-4.9)} = \frac{-323.4 \pm 323.4}{-9.8} = \frac{-323.4 + 323.4}{-9.8} = \frac{0}{-9.8} = 0 \text{ s}$$

$$t_2 = \frac{-323.4 - 323.4}{-9.8} = \frac{-646.8}{-9.8} = 66 \text{ s}$$

Finalmente al evaluar $t_2 = 66$ en la derivada de la función, se obtiene:

$$d'(66) = -9.8(66) + 323.4 \quad d'(66) = -646.8 + 323.4 = 323.4 \text{ s}$$

Que representa la velocidad instantánea o de impacto del proyectil con el suelo. Cabe señalar que la velocidad con la que choca el proyectil con el suelo es la misma velocidad con la que inició su recorrido. Para cualquier proyectil que se arroje verticalmente hacia arriba y sin contemplar la resistencia del aire, ¿siempre sucede que la velocidad inicial es igual a la velocidad de impacto con el suelo o depende de otro factor?

Ejemplo 2

Comportamiento de funciones. El volumen máximo de una caja.

Un fabricante desea diseñar una caja de cartón sin tapa que contenga una base cuadrada a partir de una pieza de cartón de forma cuadrada cuyo lado es un metro. ¿Cuáles son las dimensiones del diseño para producir una caja con el volumen máximo?

Comprensión del problema

El volumen de la caja dependerá de los distintos tamaños de los cortes (de lado x) de las esquinas de la pieza de cartón (cuadrados rojos de la figura 21).

Figura 21 Pieza cuadrada de cartón de un metro de lado, utilizada para fabricar una caja sin tapa superior, cortando cuadrados en sus cuatro esquinas, y levantando los cuatro rectángulos resultantes, para formar los laterales de la caja.
Si el volumen de la caja depende de los distintos tamaños de los cortes (de lado \(x\)) de las esquinas de la pieza de cartón, es importante que realices lo siguiente:

- Describe cómo cambian sus dimensiones.
- Piensa cómo va cambiando la forma de la caja de cartón para los distintos valores de \(x\).
- Busca una expresión para el volumen de la caja resultante.

Para determinar la expresión matemática (función) que identifica el volumen de dicha caja de cartón, cortamos un cuadrado de lado \(x\) en cada esquina de la pieza de cartón y observamos que el área de la base de la caja estará determinada por la función:

\[
A(x) = (1-2x)(1-2x) = (1-2x)^2.
\]

Y por lo tanto la función que representa el volumen de la caja es:

\[
V(x) = x(1-2x)^2 = 4x^3 - 4x^2 + x
\]

En la figura 24 se ejemplifica la variación del volumen de la caja a partir de determinado corte de las esquinas de la pieza cuadrada de cartón.

Figura 22. Función área y volumen que describen el problema de optimización de recursos matemáticamente.

A partir de la función volumen, arriba descrita, realiza lo siguiente:

- Construye una tabla de valores que relacione la variable independiente, \(x\), con la variable dependiente, \(V\). Emplea un incremento en \(x\) de 0.5.
- ¿Crees que se alcanzará un volumen máximo para algún valor de \(x\)? Justifica tu respuesta. En caso afirmativo, ¿cuál es dicho valor?

El poder del cálculo diferencial

El volumen máximo de la caja de cartón lo obtendremos justo cuando la derivada de la función volumen, \(V'(x)\) sea igual a cero, es decir, cuando la recta tangente a la curva sea horizontal (con
pendiente cero). De esta forma la altura \(x \) de la caja queda determinada gracias al concepto de derivada de una función, entonces derivando la función volumen obtenemos: \(V'(x) = 12x^2 - 8x + 1 \).

El problema queda resuelto al hacer \(V'(x) = 0 \) y determinar la variable \(x \), que representa el corte en la pieza cuadrada de cartón o altura de la caja, es decir, utilizando de nuevo la fórmula general de segundo grado:

\[
x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

A partir de la función volumen de la caja se tiene que: \(a = 12 \), \(b = -8 \) y \(c = 1 \). Sustituyendo valores en la ecuación anterior tenemos:

\[
x_{1,2} = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(12)(1)}}{2(12)} = \frac{-(-8) \pm \sqrt{64}}{24} \Rightarrow x_1 = \frac{8 + 4}{24} = \frac{1}{2} \text{ m, } x_2 = \frac{8 - 4}{24} = \frac{1}{6} \text{ m}
\]

Por lo tanto, el volumen máximo de la caja se obtiene cuando el corte en cada esquina en la pieza cuadrada de cartón es \(x = \frac{1}{6} \) de metros (aproximadamente 16.6 centímetros). De esta forma el volumen máximo en metros cúbicos es:

\[
V\left(\frac{1}{6}\right) = \frac{1}{6} \left(1 - 2\left(\frac{1}{6}\right)^2\right) = \frac{1}{6} \left(\frac{4}{6}\right)^2 = \frac{4^2}{6^2} \cdot \frac{16}{216} = \frac{2}{27} = 0.074 \text{ m}^3.
\]

Por lo tanto, para un corte en cada esquina de la pieza cuadrada de cartón de \(x = \frac{1}{6} \) m = 16.6 cm, la pendiente de la recta tangente a la curva, \(V(x) \), es cero y por lo tanto se tiene que \(V'(x) = 74.000 \text{ cm}^3 \) es el volumen máximo de la caja. En la figura 23 se observa la gráfica de la función volumen y dos de sus rectas tangentes a la curva en puntos \((x, V(x)) \) dados. De donde la pendiente de dichas rectas tangentes es la derivada de la función volumen, \(V(x) \), dado un punto.

Figura 23a y 23b

(a) El valor del volumen de la caja es \(P = 64.000 \text{ cm}^3 \) para un valor de \(x = 10 \) cm, la pendiente de la recta tangente a la curva, \(V(x) \), no es cero y por lo tanto no se tiene el volumen máximo.

(b) El valor del volumen de la caja es \(P = A = 74.000 \text{ cm}^3 \) para un valor de \(x = \frac{1}{6} \) m = 16.6 cm, la pendiente de la recta tangente a la curva, \(V(x) \), es cero y por lo tanto aquí sí se tiene el volumen máximo de la caja.
Definición de conceptos referentes al comportamiento de funciones y uso de la derivada

En el cálculo se dedica mucho esfuerzo a la determinación del comportamiento de funciones en un cierto intervalo, esto debido a la implicación de los resultados al tratar problemas como los dos anteriores o al estudiar diversos fenómenos naturales y contextos sociales como los que estamos trabajando en este módulo.

Si \(y = f(x) \) representa una función definida sobre un intervalo \(I \), ¿tiene \(f \) un valor máximo o mínimo sobre \(I \)? ¿Dónde es creciente o decreciente la función? ¿Dónde la gráfica de la función está curvada hacia abajo o hacia arriba? En este apartado se definen los conceptos matemáticos y se enuncian los teoremas (sin demostración) que permiten usar las derivadas de funciones para dar respuesta a estos cuestionamientos, de tal forma que podamos plantear y resolver diversos fenómenos naturales y contextos sociales como aplicación directa en la siguiente sección.

Definición de extremos

Sea \(f \) una función definida en un intervalo cerrado \(I \) que contiene al punto \(c \).

1. \(f(c) \) es el mínimo de \(f \) sobre \(I \) si \(f(c) \leq f(x) \) para todo \(x \) en \(I \).
2. \(f(c) \) es el máximo de \(f \) sobre \(I \) si \(f(c) \geq f(x) \) para todo \(x \) en \(I \).

El mínimo y el máximo de una función sobre un intervalo son los **valores extremos**, o simplemente **extremos**, de la función sobre dicho intervalo. El mínimo y máximo de una función sobre un intervalo también se conocen como **mínimo absoluto** o **máximo absoluto** sobre el intervalo.

Una función no tiene, por necesidad, mínimo o máximo sobre un intervalo. De hecho la continuidad (o la falta de ella) puede influir en la existencia de un extremo sobre el intervalo. Esto sugiere el siguiente teorema.

Teorema 11 Valores extremos

Si \(f \) es una función continua definida en un intervalo cerrado \([a, b] \), entonces \(f \) tiene tanto un mínimo como un máximo sobre el intervalo.

Ahora bien, en un intervalo puede suceder que determinada función tenga más de un valor mínimo o máximo, dando cabida al concepto de mínimo relativo y máximo
relativo. De manera informal, se puede pensar en un mínimo relativo como si se presentara un “valle” en la gráfica de la función, y un máximo relativo como si en ella ocurriera una “colina”. Ese valle y esa colina pueden asumir dos formas distintas. Si el valle (o colina) es suave y redondeado (o redondeada), la gráfica tiene una recta tangente horizontal en el punto más alto (o más bajo). Si el valle (o la colina) es brusco (o brusca) y forma un pico, la gráfica presenta una función que no es diferenciable en el punto más alto (o en el punto más bajo). El ejemplo gráfico se muestra en la figura 24.

Definición de extremos relativos

1. Si existe un intervalo abierto que contiene al punto c sobre el que $f(c)$ es un máximo, entonces $f(c)$ se conoce como **máximo relativo** de f.
2. Si existe un intervalo abierto que contiene al punto c sobre el que $f(c)$ es un mínimo, entonces $f(c)$ se conoce como **mínimo relativo** de f.

En los extremos relativos definidos anteriormente, la derivada de la función es cero o puede estar no definida. Los valores de x en estos puntos especiales reciben el nombre de **puntos críticos**. En la figura 24 se ilustran con color verde los dos tipos de puntos críticos de una función.

Definición de punto crítico

Sea f una función definida en el punto c. Si $f'(c) = 0$ o si f' no está definida en c, entonces c es un **punto crítico** de f.
Teorema 12 Los extremos relativos ocurren en los puntos críticos

Si f es una función que tiene un mínimo relativo o un máximo relativo en \(x = c \). Entonces c es un **punto crítico** de f.

Para poder clasificar los extremos relativos como mínimos o máximos relativos a partir del uso de la derivada de una función se requiere definir funciones crecientes y decrecientes.

Definición de funciones crecientes y decrecientes

Una función \(f \) es **creciente** sobre un intervalo si para cualesquiera dos puntos \(x_1 \) y \(x_2 \) en el intervalo, \(x_1 < x_2 \) implica que \(f(x_1) < f(x_2) \).

Una función \(f \) es **decreciente** sobre un intervalo si para cualesquiera dos puntos \(x_1 \) y \(x_2 \) en el intervalo, \(x_1 < x_2 \) implica que \(f(x_1) > f(x_2) \).

El siguiente resultado muestra que cuando una derivada es positiva implica que la función es creciente, si una derivada es negativa implica que la función es decreciente, y si una derivada es igual a cero sobre un intervalo completo implica que la función es constante sobre dicho intervalo.

Teorema 13 Prueba para las funciones crecientes y decrecientes

Sea f una función continua sobre el intervalo cerrado \([a, b]\) y diferenciable sobre el intervalo abierto \((a, b)\), entonces:

1. Si \(f'(x) > 0 \) para todo \(x \) en \((a, b)\), entonces \(f \) es creciente sobre \([a, b]\).
2. Si \(f'(x) < 0 \) para todo \(x \) en \((a, b)\), entonces \(f \) es decreciente sobre \([a, b]\).
3. Si \(f'(x) = 0 \) para todo \(x \) en \((a, b)\), entonces \(f \) es constante sobre \([a, b]\).

Toda vez que se han determinado los intervalos sobre los que una función es creciente o decreciente, se enuncia el siguiente resultado que permite localizar los extremos relativos de una función a partir del uso de la primera derivada.

Teorema 14 Prueba de la primera derivada

Sea c un punto crítico de una función f que es continua sobre un intervalo abierto \(I \) que contiene al punto c. Si f es diferenciable sobre el intervalo, excepto quizá en el punto c, entonces \(f(c) \) puede clasificarse como sigue:

1. Si \(f'(x) \) cambia de positiva a negativa en c, entonces \(f(c) \) es un máximo relativo de f.
2. Si $f'(x)$ cambia de negativa a positiva en c, entonces $f(c)$ es un mínimo relativo de f.
3. Si $f'(x)$ no cambia de signo en c, entonces $f(c)$ no es un máximo relativo ni un mínimo relativo de f.

Definición de concavidad
Sea f una función diferenciable sobre un intervalo abierto I. La gráfica de f es cóncava hacia arriba (convexa) sobre I, si f'' es creciente sobre el intervalo, y es cóncava hacia abajo sobre I, si f'' es decreciente sobre el intervalo.
El siguiente resultado indica cómo usar la segunda derivada de una función para determinar intervalos sobre los que la gráfica de la función es cóncava hacia arriba o hacia abajo.

Teorema 15 Prueba de la concavidad

Sea f una función cuya segunda derivada existe sobre un intervalo abierto I.

1. Si $f''(x) > 0$ para todo x en I, entonces la gráfica de f es cóncava hacia arriba (convexa) en I.
2. Si $f''(x) < 0$ para todo x en I, entonces la gráfica de f es cóncava hacia abajo en I.

En la figura 26 se ilustran los tipos de concavidad en la función y la existencia de puntos (tres tipos) en los que la concavidad cambia. Si la recta tangente a la gráfica existe en un punto de este tipo, dicho punto recibe el nombre de *punto de inflexión*.

![Figura 26](image)

Teorema 16 Puntos de inflexión

Si $(c, f(c))$ es un punto de inflexión de la gráfica de f, entonces $f''(c) = 0$ o bien f'' no está definida en $x = c$.

Además de permitir realizar las pruebas en relación con la concavidad de la función, la segunda derivada puede usarse para realizar una prueba sencilla respecto a los máximos y mínimos relativos.

Teorema 17 Prueba de la segunda derivada

Sea f una función tal que $f'(c) = 0$ y la segunda derivada de f existe sobre un intervalo abierto que contiene al punto c, entonces:

1. Si $f''(c) > 0$, entonces $f(c)$ es un mínimo relativo.
2. Si $f''(c) < 0$, entonces $f(c)$ es un máximo relativo.
3. Si $f''(c) = 0$, entonces la prueba falla. En esos casos, es posible aplicar la prueba de la primera derivada (ver Teorema 14).
Problemas de optimización y aplicaciones de la derivada

Considera la frecuencia con la que escuchas o lees términos como utilidad máxima, costo mínimo, tiempo mínimo, voltaje máximo, tamaño óptimo o máximo, resistencia máxima y distancia máxima. Estos problemas se llaman, en general, problemas de optimización. Una de las aplicaciones más comunes del cálculo incluye la determinación de valores máximos y mínimos de una función, y más aún, conocer para qué valores de la variable independiente se obtienen tales valores. En términos generales un problema de optimización consiste en encontrar el valor mínimo, o minimizar, o encontrar el valor máximo, o maximizar, una cierta función de tal forma que satisfaga ciertas condiciones dadas. La solución o soluciones óptimas son aquellas para las cuales se satisfacen las restricciones del problema y el valor de la función sea mínimo o máximo.

En la sección anterior, se presentó un caso particular de problemas relacionados con la optimización de recursos, esto a través de maximizar el volumen en una caja cuyo diseño se basa en una pieza cuadrada de cartón. A continuación se describe una estrategia general de resolución de problemas semejantes al que se acaba de mencionar, posteriormente se estudian otros cuatro ejemplos de optimización de recursos y se finaliza la unidad con el planteamiento y solución de problemas de aplicación de la derivada.

Estrategia de resolución de problemas de optimización

1. Identificación de variables. Asignar símbolos a todas las cantidades dadas y a las que se van a determinar. Cuando sea factible, realizar un esquema.
2. Traducción del lenguaje común al lenguaje algebraico. Escribir una ecuación primaria para la cantidad que se desea maximizar (o minimizar).
3. Reducir la ecuación primaria a una que sólo dependa de una variable. Esto puede comprender el uso de ecuaciones secundarias obtenidas a partir de los datos del problema que relacionen las variables independientes de la ecuación primaria.
4. Determinar el dominio de la ecuación primaria. Es decir, determinar los valores para los cuales el problema planteado tiene sentido.
5. Determinar el valor máximo o mínimo deseado por medio de las técnicas del cálculo explicadas con anterioridad.

Nota: al llevar a cabo el paso 5 hay que recordar que para determinar el valor máximo, o el mínimo, de una función f continua sobre un intervalo cerrado, se
Cálculo en fenómenos naturales y procesos sociales deben de comparar los valores de \(f \) en sus puntos críticos con los que tenga en los puntos extremos del intervalo.

Ejemplo 1

Determinación de un área mínima.

Para el diseño del presente escrito, la editorial solicitó al autor que los márgenes superior e inferior de toda página impresa debían ser de 3 centímetros, mientras que los de la izquierda y derecha de 2 centímetros respectivamente (véase la figura 27). Si la página rectangular debe contener 384 centímetros cuadrados de área de impresión, ¿cuáles deben ser las dimensiones de cada página de modo que se use la menor cantidad de papel?

Solución. Sea \(A \) el área que se debe minimizar, entonces la ecuación primaria es:

\[
A = (x + 6)(y + 4)
\]

Ahora bien, el área impresa dentro de los márgenes se expresa mediante la ecuación secundaria: \(384 = xy \)

Al despejar \(y \) de la ecuación secundaria y sustituirla en la ecuación primaria se obtiene la siguiente función de una variable:

\[
A(x) = (x + 6)\left(\frac{384}{x} + 4\right) = 408 + 4x + \frac{2304}{x}
\]

El problema planteado sólo tiene sentido para valores de \(A \) donde la \(x > 0 \). Con el fin de encontrar los puntos críticos, se iguala a cero la derivada de \(A(x) \):

\[
A'(x) = \frac{dA}{dx} = 4 - \frac{2304}{x^2} = 0 \Rightarrow x^2 = 576
\]

Por lo tanto, los puntos críticos son \(x = \pm 24 \). Pero no tiene sentido considerar \(-24\) porque está fuera del dominio de la función. Podemos utilizar el criterio de la segunda derivada para identificar si el punto crítico es máximo o mínimo, derivando la primera derivada se obtiene:

\[
A''(x) = \frac{d^2A}{dx^2} = -\frac{2304}{x^3} \Rightarrow A''(24) = -\frac{2304}{24^3} < 0
\]

Por tanto la prueba de la segunda derivada confirma que \(A \) tiene un mínimo cuando \(x = 24 \). Comprueba lo anterior utilizando la prueba de la primera derivada.

Por consiguiente, como \(y = \frac{384}{x} \), entonces \(y = \frac{384}{24} = 16 \) y las dimensiones de cualquier página con las condiciones planteadas en el problema deben ser: \(x + 6 = 24 + 6 = 30 \text{ cm} \) (largo), por \(y + 4 = 16 + 4 = 20 \text{ cm} \) (ancho).
Ejemplo 2

Determinación de un máximo en un punto extremo

Se van a usar cuatro metros de alambre para formar un cuadro y un círculo. ¿Cuánto alambre debe usarse para el cuadrado y cuánto para el círculo con el fin de que la suma de las áreas sea máxima?

Solución. El área total (ver figura 28) se expresa mediante la siguiente función:

\[A = (\text{área del cuadrado}) + (\text{área del círculo}) \]

Es decir, la ecuación primaria es: \(A = x^2 + \pi r^2 \)

En virtud de que la cantidad total de alambre es 4 metros, se obtiene:

\[4 = (\text{perímetro del cuadrado})+(\text{circunferencia del círculo}) \]

Es decir, la ecuación secundaria se expresa mediante:

\[4 = 4x + 2\pi r \]

Despejando la variable que describe el radio, se tiene: \(r = \frac{2(1-x)}{\pi} \) y sustituyendo el valor en la ecuación primaria obtenemos:

\[A(x) = x^2 + \pi \left(\frac{2(1-x)}{\pi} \right)^2 \Rightarrow A(x) = x^2 + \frac{4(1-x)^2}{\pi} \Rightarrow A(x) = \frac{1}{\pi} \left[(\pi + 4)x^2 - 8x + 4 \right] \]

El dominio factible es \(0 \leq x \leq 1 \), restringido por el perímetro del cuadrado. Ahora bien, puesto que la derivada de la función área es: \(\frac{dA}{dx} = A'(x) = \frac{2(\pi + 4)x - 8}{\pi} \), el único punto crítico en \((0, 1)\) está dado por: \(x = \frac{4}{\pi + 4} \approx 0.56 \)

Por consiguiente, a partir de las siguientes evaluaciones:

\[A(0) = 1.273 , \ A(0.56) = 0.56 \text{ y } A(1) = 1 \]

Se concluye que el área máxima es cuando \(x = 0 \). Es decir, todo el alambre se usa para el círculo.

Ejemplo 3

Determinación de la longitud mínima

Dos postes requeridos para hacer instalación eléctrica, uno de 12 metros de altura y el otro de 28, están colocados verticalmente con una separación de 30 metros entre sí. Se les van a colocar tirantes sujetos a una sola estaca, que irán del nivel del suelo hasta la punta superior de cada uno de ellos. ¿Dónde debe colocarse la estaca para usar la menor cantidad de alambre? Ver la figura 29.

Solución. Sea \(W \) la longitud del alambre, la cual se debe minimizar. A partir de la figura 30, se observa que la ecuación primaria está dada por: \(W = y + z \).

(Continúa...)
En este problema, en lugar de expresar y en términos de z (o viceversa), vamos a expresar ambas variables en términos de una tercera variable x. A partir del teorema de Pitágoras, se obtienen las siguientes ecuaciones secundarias:

\[x^2 + 12^2 = y^2, \quad (30 - x)^2 + 28^2 = z^2 \]

Implicando que:

\[y = \sqrt{x^2 + 144}, \quad z = \sqrt{x^2 - 60x + 1684} \]

De esta forma, la variable W queda expresada por:

\[W = y + z = W(x) = \sqrt{x^2 + 144} + \sqrt{x^2 - 60x + 1684} \]

Para toda \(0 \leq x \leq 30 \), la derivada W de con respecto a x es:

\[W'(x) = \frac{dW}{dx} = \frac{x}{\sqrt{x^2 + 144}} + \frac{x - 30}{\sqrt{x^2 - 60x + 1684}} \]

haciendo \(\frac{dW}{dx} = 0 \), se obtiene:

\[\frac{x}{\sqrt{x^2 + 144}} + \frac{x - 30}{\sqrt{x^2 - 60x + 1684}} = 0 \Rightarrow x\sqrt{x^2 - 60x + 1684} = (x - 30)\sqrt{x^2 + 144} \]

\[x^2 - 60x + 1684 = (x - 30)^2(x^2 + 144) \]

\[x^4 - 60x^3 + 1044x^2 - 8640x + 129,600 = 640x^3 + 8640x - 129,600 = 0 \]

\[\Rightarrow 320(x - 9)(2x + 45) = 0 \]

Entonces, los puntos críticos están en: \(x_1 = 9 \) y \(x_2 = \frac{45}{2} \). Puesto que sólo \(x_1 \) pertenece al dominio y de las evaluaciones: \(W(0) = 53.04 \), \(W(9) = 50 \) y \(W(30) = 60.31 \)

Se concluye que el alambre debe sujetarse a la estaca a 9 metros del poste con 12 metros de altura.
Ejemplo 4

Determinación de la mínima distancia

Cierta carretera dirección Norte-Sur se intercepta con una carretera Este-Oeste en el punto P. Un automóvil cruza el punto P a las 10:00 am, viajando hacia el oeste con una velocidad constante de 80 km/h. En el mismo instante otro automóvil está a 2 kilómetros al norte del punto P viajando hacia el sur a 120 km/h. Determina el tiempo en el cual los dos automóviles se encuentran más cerca uno del otro y aproxima la mínima distancia entre dichos automóviles.

Solución. Las posiciones iniciales de los automóviles se ilustran en la figura 30. Si t denota el número de horas después de las 10:00 am, entonces el automóvil que viaja más lento está 80t kilómetros al este del punto P. El automóvil que viaja más rápido está a 120t kilómetros al sur de su posición inicial a las 10:00 am, luego su posición a partir del punto P es \(2 - 120t\). Por el teorema de Pitágoras, la distancia \(d\) entre los dos automóviles está dada por:

\[d(t) = \sqrt{(2 - 120t)^2 + (80t)^2} \]

Evidentemente la distancia \(d\) tiene un valor mínimo cuando la expresión dentro del radical tiene un mínimo. Entonces, podemos simplificar el trabajo denotando:

\[f(t) = (2 - 120t)^2 + (80t)^2 \]

como la expresión que debemos minimizar. Encontrando el valor de \(t\) para el cual la función \(f\) tiene un mínimo. Como en la derivada \(f'(t) = -4800t + 41600t\), el único punto crítico de la función \(f\) es:

\[t = \frac{480}{41600} = \frac{3}{260} \text{ horas.} \]

(Continúa...)
Aplicaciones del cálculo diferencial en fenómenos naturales y procesos sociales

Las matemáticas poseen no sólo la verdad, sino la suprema belleza, una belleza fría y austera, como una tumba.

Bertrand Arthur Russell (1872-1970)

El cierre de esta unidad de trabajo será a partir del tratamiento de otro problema que permita el estudio de un fenómeno natural y proceso social a partir del uso adecuado de herramientas matemáticas descritas en las secciones anteriores.

Problema. Perfil epidemiológico de la mortalidad por influenza humana (AH1N1) en México

Entre finales de febrero y principios del mes de abril de 2009 ocurrieron dos hechos fuera de lo común en México; por una parte se incrementó el número de hospitalizaciones y defunciones por neumonía grave y, por otra, aumentó el número de casos probables de influenza estacional, que las autoridades de salud interpretaron como un desplazamiento del pico estacional hacia el inicio del periodo primaveral, debido a que 63% se reportó como tipo A y 37% como tipo B, se consideró que se trataba de casos de influenza estacional. Llamaba la atención que los grupos de edad más afectados eran los de 5 a 14 y 25 a 44 años,
pero esto se atribuyó a la acumulación de personas más susceptibles en esos grupos, dado que no se habían vacunado por tratarse de grupos no considerados como prioritarios para la vacunación contra la influenza estacional.

Para el 11 de abril se habían contabilizado 14 brotes de influenza en el país; el número acumulado de casos era tres veces mayor al periodo similar de 2008 y habían fallecido tres pacientes con influenza, dos confirmados por laboratorio y otro sólo con diagnóstico clínico. Tal situación puso en alerta a las autoridades de salud del país, y con el fin de tipificar el virus se enviaron muestras de los pacientes sospechosos de influenza al Laboratorio Nacional de Microbiología de la Oficina de Salud Pública de Canadá, a fin de identificar el agente que estaba enfermando a las personas. Por otra parte, los días 18 y 19 de abril se efectuó una búsqueda activa de casos en 23 hospitales del Distrito Federal, en la que se encontraron 120 personas hospitalizadas con neumonía, 61% de los cuales correspondía a hombres y cuyos síntomas predominantes eran fiebre por arriba de 38° C, tos, cefalea (dolor de cabeza), ataque al estado general, mialgias y cansancio extremo.

El 17 de abril el Centro para el Control y Prevención de Enfermedades (CDC) de Estados Unidos y el Departamento de Salud Pública de California identificaron una nueva cepa de virus, tipificada como AH1N1, en dos pacientes pediátricos que habían mostrado síntomas febriles respiratorios a finales de marzo. El 23 de abril la Secretaría de Salud de México recibió los resultados del laboratorio de Canadá, en los que se notificó que en casi la tercera parte de las muestras se había encontrado un virus genéticamente idéntico al encontrado en California. Para esa fecha, el número de defunciones en México ya sumaba 20, por lo que la Secretaría de Salud intensificó las medidas de distanciamiento social, protección e higiene personal para controlar la epidemia por este nuevo virus. Como ya es conocido, la epidemia se expandió desde Norteamérica a otras zonas del mismo continente, así como a países de Europa y Asia y alcanzó una magnitud que llevó a la Organización Mundial de la Salud, (OMS) a declarar primero el incremento a fase V y a partir del 11 de junio de 2009 la fase VI o fase de pandemia.

En conclusión, los afectados por la epidemia de la influenza AH1N1 fueron personas jóvenes. Casi 79% correspondió a menores de 30 años, coincidiendo con lo observado en Estados Unidos, Canadá y algunos países de Europa, a diferencia de la influenza estacional, la influenza por virus AH1N1 produjo una mayor proporción de infección respiratoria aguda, con mayor mortalidad entre los 20 y 59 años. Las personas que sufrieron el ataque del nuevo virus acudieron de forma tardía a recibir atención hospitalaria. Sólo 17% lo hizo dentro de las primeras 72 horas después del inicio de los síntomas. La comorbilidad que se presentó en los casos se relacionó principalmente con trastornos metabólicos, obesidad y diabetes mellitus. Cerca de 60% de las personas que fallecieron tenían algún padecimiento diagnosticado de forma previa y la mitad de ellas mostraba más de un trastorno adjunto o comorbilidad múltiple.
Contesta las siguientes preguntas:

1. ¿De qué rangos de edad fueron las personas contagiadas por la influenza?
2. Investiga cuáles fueron las medidas que el gobierno de México tomó para hacer frente a la enfermedad.
3. Investiga cuál es el significado de “comorbilidad”
4. ¿Qué acontecimiento social, político o económico ocurrió cuando se dio a conocer el brote de influenza humana en México y el mundo?
5. ¿Cuáles fueron los efectos sociales, políticos y económicos generados por la aparición del virus AH1N1?
6. ¿A qué crees que se deba que algunos médicos asocien enfermedades de animales en los seres humanos (mutación)?
7. La gráfica mostrada en el texto es un modelo matemático de los casos de influenza reportados en el país entre el 1 de abril y el 11 de mayo de 2009. La función asociada al problema anterior es la siguiente:
 \[f(t) = \frac{0.64t - 18.99}{0.00054t^2 - 0.04594t + 1} \]
 donde \(t \) representa los días transcurridos.
8. Con base en el modelo matemático anterior, responde lo siguiente:
 a) Obtén la gráfica de la función \(f(t) \).
 b) Obtén la derivada \(f'(t) \)
 c) ¿Cuál es la tasa de variación cuando \(t = 32 \) días?
 d) Determina la velocidad de crecimiento cuando \(t = 45 \) días.
 e) ¿En qué momento la tasa de variación tuvo valor cero?
 f) ¿A partir de qué valor la velocidad de crecimiento empezó a disminuir?

Recuerda verificar tus respuestas en el Apéndice 1
¿Qué voy a aprender y cómo?
En la anterior unidad se abordaron fundamentalmente tres de los cuatro problemas que propiciaron el surgimiento histórico del cálculo diferencial e integral. En esta unidad, si bien se seguirán analizando dichos problemas, se estudiará con especial énfasis el cuarto y último problema, mismo que a su vez tiene dos variantes. La primera variante consiste en la obtención de áreas de figuras con frontera curva, y la segunda es la determinación de la distancia recorrida por un móvil con una velocidad no uniforme. La resolución de las dos problemáticas anteriores hizo posible el inicio del cálculo integral.

¿Con qué propósito?
El propósito de esta unidad se centra en explicar en forma objetiva, integral y precisa el comportamiento de fenómenos naturales y procesos sociales propios de tu entorno, por medio de la aplicación de la derivada, la diferencial, la antiderivada y el teorema fundamental del cálculo, para realizar predicciones de éstos en tiempos definidos e identificar su impacto en el entorno.

¿Qué saberes trabajaré?
En esta unidad se analizarán conceptos como la diferencial y la antiderivada, mismos que constituyen el preámbulo para el concepto más importante de todo el cálculo: el teorema fundamental. Asimismo, la derivada se utilizará como herramienta para explicar fenómenos naturales y procesos sociales cuantificables.
¿Cómo organizaré mi estudio?
Se considera que 40 horas aproximadamente sean suficientes para estudiar la totalidad de esta unidad. Si dividimos esa cantidad entre 10 horas semanales, tendremos que ocuparás 4 semanas para abarcar todos los contenidos. A continuación te presentamos, a modo de sugerencia, una tabla donde se dosifican las horas de estudio para cada tema de la unidad, en sesiones de dos horas diarias.

<table>
<thead>
<tr>
<th>Temas</th>
<th>Primera semana</th>
<th>Segunda semana</th>
<th>Tercera semana</th>
<th>Cuarta semana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinámica poblacional. Antiderivada e integral indefinida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reglas básicas de integración. El área bajo la curva y la integral definida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teorema fundamental del cálculo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La derivada como explicación de fenómenos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¿Cuáles serán los resultados de mi trabajo?
Una vez que termines el estudio de esta unidad sabrás obtener la derivada a fin de determinar las variaciones de un fenómeno (natural o social).
También utilizarás las reglas de diferenciación y de integración para explicar variaciones en los fenómenos. Podrás calcular el área que hay bajo una curva cualquiera mediante la aplicación de integrales.
Serás capaz de:

- Interpretar los valores obtenidos al calcular la derivada de una función, así como los valores máximos y mínimos que determinas al usar procedimientos propios de la diferencial e integral.
- Relacionar las características de un fenómeno natural con algún proceso social de tu entorno.
- Explicar el comportamiento de un fenómeno a partir de la obtención de la integral.
- Comprender que la derivada y la integral son operaciones inversas que pueden ser complementarias al explicar cualquier fenómeno.
- Emplear métodos convencionales y/o software especializado para calcular derivadas y antiderivadas. También explicarás de manera objetiva cualquier fenómeno.
- Usarás el teorema fundamental del cálculo para sistematizar el análisis matemático de comportamientos o estimaciones de fenómenos.
- Proponer alternativas viables y objetivas de solución que se relacionen con el análisis de un fenómeno, a partir de la obtención de la derivada, la antiderivada y el teorema fundamental del cálculo.

Introducción
El cálculo se compone de dos partes principales, el cálculo diferencial y el integral; en su interior moran como demonios los infinitos tanto grandes como pequeños. El cálculo diferencial se basa en la operación de derivación de una función, un concepto previamente estudiado en la primera unidad de este libro y de gran importancia para el estudio de la naturaleza y de los procesos sociales. En esta unidad se define la operación de integración como la inversa de la diferenciación y los
conceptos básicos a tratar del cálculo integral son la antiderivada de una función y la integral definida. El puente entre estas dos operaciones inversas y fundamentales del cálculo es el teorema fundamental del cálculo, que estudiaremos a detalle en esta unidad por medio del planteamiento y resolución de problemas que permitan realizar estimaciones sobre el comportamiento de un fenómeno natural y/o proceso social presente en tu entorno.

La integral de una función es una de las herramientas más poderosas de las matemáticas y las ciencias aplicadas, su definición principalmente está relacionada con la distancia recorrida por un móvil con velocidad no constante, el trabajo mecánico desarrollado por una fuerza variable que desplaza cierta distancia un objeto, así como también con el volumen o área de figuras y regiones con frontera curva en un sistema de coordenadas.

Hasta el momento y con aritmética elemental, podemos calcular fácilmente el área si la región está limitada por líneas rectas o determinar la distancia de un móvil que viaja a velocidad constante, pero si lo que tenemos es un área acotada por líneas curvas o un móvil que viaja con velocidad no constante, entonces debemos introducir un proceso de límite y usar los métodos propios del cálculo para determinar el área o la distancia recorrida por un móvil. En la presente unidad de trabajo, el objetivo a priori es que desarrolles saberes y habilidades matemáticas propias del cálculo arriba descritas.

Aunado a lo anterior, se considera fundamental que también identifiques el momento histórico del surgimiento del cálculo infinitesimal y que expliques la importancia del acontecimiento para el desarrollo de la ciencia y tecnología. En esta unidad (como en la primera) no sólo se vinculan diferentes disciplinas de estudio como la historia, biología, química y física, sino que también se te motiva a relacionar tus conocimientos previos con el estudio y tratado de la naturaleza y con procesos sociales a través del desarrollo de nuevos conocimientos matemáticos y propios del cálculo.

Primera parte

Del legado de las matemáticas, el cálculo infinitesimal es, sin duda, una herramienta poderosa y eficaz para el tratado y estudio del comportamiento de fenómenos naturales y procesos sociales.

Osman Villanueva García (1975-)

Entre los fenómenos más significativos de nuestra época, vinculado a las transformaciones del medio ambiente y al concepto de movimiento como eje rector de
nuestro estudio, destaca el crecimiento poblacional por ser un importante modificador de las condiciones reales que se manifiestan en el entorno de un cierto lugar o región en el mundo. A medida que la población humana se expande y crece en número, manteniéndose al mismo tiempo el ritmo de desarrollo económico global, crece la demanda de alimento, agua, combustibles fósiles, minerales y otros recursos naturales. Resulta entonces muy importante determinar la tasa de crecimiento poblacional, es decir, el porcentaje de aumento o disminución de la población de un determinado país o región durante cierto periodo. De hecho si expresamos matemáticamente al número de individuos que habita determinado territorio como una relación funcional dependiente del tiempo, entonces a partir de lo estudiado en la primera unidad de este libro, la derivada de dicha función no es otra cosa que el crecimiento instantáneo de esa población, lo cual se vincula —el porcentaje o tasa de dicho crecimiento poblacional— y se convierte en un factor que determina la magnitud de las demandas que deben satisfacerse en cuestión de infraestructura (escuelas, hospitales, vivienda, carreteras), recursos (alimentos, agua, electricidad) y empleo durante determinado tiempo.

- Las tasas de crecimiento de la población son mucho más altas en la mayoría de los países de ingreso bajo y mediano respecto de la mayoría de los países de ingreso alto.
- Las tasas de crecimiento de la población han disminuido en las últimas décadas en los países de ingreso bajo y mediano, pero siguen siendo altas porque las tasas de natalidad no han bajado con la misma rapidez que las tasas de mortalidad.
- En el año 2015 habrá un número superior a mil millones de personas más en el mundo que en 2000 ya que la población aumentará de 6 000 millones a 7 100 millones), y seis de cada siete de esas personas vivirán en países de ingreso mediano y bajo.
- Aunque la tasa de crecimiento de la población de los países en desarrollo ha estado disminuyendo durante varios decenios, el número de personas que se agregan a la población cada año ha ido aumentando porque la base demográfica se ha vuelto mayor.
- Los países que tienen una gran proporción de su población en edad de procrear generalmente experimentan un impetu demográfico (véase esta definición en el enlace: http://www.worldbank.org/depweb/spanish/modules/glossary.html). Incluso si las parejas sólo tienen el número de hijos suficiente para reemplazarlos cuando mueran, la población continuará creciendo y no se estabilizará hasta que el grupo más joven llegue a una edad en que ya no pueda tener hijos.
- Las tasas de natalidad por lo general bajan cuando los padres tienen acceso a métodos de planificación de la familia, a servicios de atención de la salud, a la educación y al empleo.
- El crecimiento de la población puede hacer más difícil mejorar los niveles de vida en algunos países y puede ejercer presión sobre el medio ambiente.
- Dos de las estrategias más eficaces para reducir las tasas de fecundidad (número promedio de hijos que tendrá una mujer durante su vida) son proporcionar más acceso a la atención primaria de la salud y promover la educación de las niñas y las mujeres.
Dinámica poblacional, un fenómeno que incita al cálculo

Las características de la vida en las sociedades humanas del pasado y presente siglo no pueden preverse sin tener en cuenta los constantes cambios que acontecen en el desarrollo general de la sociedad, los cuales, debido a la globalización, imprimen destacadas particularidades a la dinámica de la población en el entorno social.

Diversas agrupaciones sociales, incluyendo el Fondo de Población de las Naciones Unidas (FPNU; en inglés United Nations Population Fund: UNFPA), han expresado su preocupación por la fuerte incidencia del crecimiento poblacional en lo que tiene que ver con las emisiones de gases de efecto invernadero y su alto impacto en el cambio climático (véase la primera unidad), puesto que diversas proyecciones resultantes del estudio y tratado de la dinámica de poblaciones a partir de modelos matemáticos establecen un incremento de entre mil y cuatro mil millones de habitantes en el mundo para el año 2050. Sin duda la mayor incidencia estará en las grandes ciudades, a donde acuden corrientes migratorias en busca de mayores oportunidades laborales, de educación y de condiciones de vida. De esta forma el crecimiento de las ciudades y la urbanización del mundo constituyen unos de los hechos más importantes de los tiempos modernos; el predominio de las ciudades puede considerarse consecuencia de la concentración de actividades y servicios.

En el siglo pasado por ejemplo, México cambió de ser un país rural a uno donde la mayor parte de la población vive en localidades urbanas (mayores a 2 mil 500 habitantes). Las entidades federales predominantemente urbanas son el Distrito Federal, Nuevo León, Baja California y Coahuila; en contraste, en Oaxaca, Chiapas e Hidalgo menos de la mitad de su población habita en localidades urbanas. La migración del campo a las ciudades, y más recientemente el intenso movimiento de personas entre ciudades, son dos de las fuerzas que definen el patrón de distribución actual de la población en México. Hablamos de una población que ha sufrido una profunda transformación demográfica. En 1900 había poco más de 13 millones de habitantes en nuestro territorio nacional, para el 2000 casi se alcanzaron los 100 millones y de acuerdo con los resultados del II Conteo de Población y Vivienda 2005, realizado por Instituto Nacional de Estadística y Geografía (INEGI), la población mexicana en el 2005 era de 103.3 millones de habitantes. A pesar de la reducción en la tasa de crecimiento, el incremento neto de la población en el periodo 2000-2005 fue de casi 5.8 millones de personas, es decir, se tuvo un
crecimiento del 1% anual. Según las proyecciones que se muestran en el gráfico 1 y elaboradas por el Consejo Nacional de Población (CONAPO), la población seguirá creciendo hasta alcanzar cerca de 130 millones en el año 2040, para posteriormen-te iniciar lentamente su descenso.

Cabe destacar del gráfico anterior que la relación de la población y el crecimiento de la misma en un instante dado matemáticamente se modela a partir de una rela-ción funcional y la respectiva derivada en un tiempo dado (primera unidad del presente libro). Dicho de otra forma, si \(P(t) \) representa el número de individuos de cierto país en el tiempo \(t \) (véase la gráfica de barras anterior), entonces el creci-miento instantáneo de la población es precisamente la derivada de la función \(P(t) \).

El objetivo de estos modelos matemáticos es explicar o predecir el número de la población en determinado tiempo, la cual se expresa con la función \(P(t) \), que cuenta el número de individuos presentes en el instante \(t \). Aunque la función \(P(t) \) necesariamente toma valores enteros, cuando el número de individuos es grande se toma como una función de valores reales, continua y varias veces derivable. Los modelos que describen la dinámica poblacional se basan en leyes de crecimiento de la población, mismas que son funciones definidas por la razón de cambio \(dP/dt \) de la población por unidad de tiempo.

El modelo exponencial introducido por Thomas Malthus (1776-1834) en 1798, supone tasas de nacimientos y muertes (con relación al total de la población) cons-tantes en el tiempo. Es decir, \(\frac{dP}{dt} = (r_n - r_m) P = rP \), donde \(r_n \) es la tasa (instantánea) de nacimientos (por individuos y por unidad de tiempo) y \(r_m \) la tasa de muertes. La resta de ambas es la tasa de crecimiento neto \(r \) de la población. Este modelo supone que las tasas son determinadas de alguna manera por los mecanismos de repro-ducción, crecimiento y muerte de la población, los cuales se mantienen fijos en el tiempo.
El modelo exponencial no puede ser indefinidamente válido, ya que tendría que llegar un momento en que los recursos llegan a su máxima capacidad, limitando la tasa de crecimiento. Pero puede ser apropiado en términos de corto plazo. En el caso de las poblaciones humanas el crecimiento exponencial se puede sostener por periodos largos si los recursos aumentan a medida que crece la población, mediante el desarrollo tecnológico. La solución del modelo exponencial es precisamente el tema central de esta unidad del libro, y para determinarla necesitamos construir la herramienta matemática y propia del cálculo que responda a la siguiente pregunta obligada, ¿cómo determinar la población \(P(t) \) a partir de la razón instantánea de cambio, \(\frac{dP}{dt} \)? Es decir, hablamos del proceso inverso que estudiamos en la primera unidad del libro, determinar la función cuya derivada sea el crecimiento instantáneo de la población. Más adelante en esta unidad se describe a partir del concepto de movimiento, eje rector del libro, la construcción y desarrollo de tan importante herramienta matemática denominada antiderivada o integral indefinida.

Con base en el texto anterior y una pertinente investigación contesta las siguientes preguntas.

1. ¿Qué mide la tasa de crecimiento de la población?

2. Si quisieras tener una idea exacta acerca de las tendencias del crecimiento de la población de un país, ¿tomarías en cuenta la tasa media de crecimiento anual de un sólo año, o de un periodo de varios años? Explica por qué.

3. Contesta brevemente cada una de las siguientes preguntas
 a. ¿Cuáles son posibles razones de la disminución de las tasas de mortalidad y de natalidad en el mundo?

 b. ¿Cuál es la causa del ímpetu demográfico? ¿Cuáles son sus consecuencias?
c. ¿En qué forma podría el aumento de la urbanización influir en las condiciones ambientales de un país?

d. ¿Hasta qué punto resulta afectada la situación económica, ambiental o social de tu nación por los movimientos migratorios entre tu país y otros países o entre las zonas rurales y urbanas de tu país?

e. ¿Qué tipo de servicios y de apoyo puede proporcionar un gobierno a sus ciudadanos para ayudar a desacelerar la tasa de crecimiento de la población? Explica por qué crees que esas estrategias pueden ser útiles.

f. ¿Cuáles podrían ser algunas de las razones por las que las mujeres con educación básica por lo general tienen un menor número de hijos que aquellas que no alcanzan ese nivel educativo?

4. Calcula la tasa anual de crecimiento de la población de los países A, B y C utilizando los datos del cuadro siguiente:

<table>
<thead>
<tr>
<th>País</th>
<th>Población al comienzo del año</th>
<th>Población al final del año</th>
<th>Aumento de la población durante el año</th>
<th>Tasa anual de crecimiento de la población (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>País A</td>
<td>22.000.000</td>
<td>22.400.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>País B</td>
<td>8.500.000</td>
<td>8.800.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>País C</td>
<td>400.000.000</td>
<td>410.000.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Las tasas medias de crecimiento anual de la población a lo largo de varios años dan una idea más exacta que las tasas anuales. Para calcular una tasa de crecimiento durante un período más largo que un año es necesario utilizar fórmulas matemáticas más complicadas que la utilizada para calcular una tasa anual.
5. Las tasas de crecimiento de la población son cifras pequeñas pero producen grandes efectos en la población. Para ver lo que esto significa, realiza los siguientes ejercicios:

a) Supongamos que la población mundial a comienzos de 2000 era de aproximadamente 6.000 millones. Si la tasa media anual proyectada de crecimiento de la población mundial en ese año fue de 1.1%, ¿cuántas personas más se habrían agregado a la población mundial en 2001?

b) Si en 2000 la población mundial hubiera crecido a una tasa del 0.2%, es decir a la misma tasa proyectada del Reino Unido, ¿cuántas personas más se habrían agregado a la población mundial en 2001?

c) Si en 2000 la población mundial hubiera crecido a una tasa de 1.7%, es decir a la misma tasa proyectada de Kenia, ¿cuántas personas más se habrían agregado a la población mundial en 2001?

d) Utiliza tus respuestas a las preguntas a, b y c para elaborar en tu cuaderno un escrito simple donde expliques en términos generales la relación que existe entre las tasas de crecimiento de la población y el cambio de tamaño de una población.

Recuerda verificar tus respuestas en el Apéndice 1

Detrás de todas, o casi todas las actividades que los seres humanos realizamos de manera cotidiana, existe una gran infraestructura tecnológica basada en modelos matemáticos. Podría decirse que gracias al esfuerzo de matemáticos, ingenieros, físicos, químicos, biólogos y otros especialistas nuestro quehacer cotidiano se ha simplificado y se ha hecho más eficiente en muchos aspectos. Por esta razón resulta muy importante que al estudiar y tratar diversas aplicaciones relacionadas con nuestra cotidianeidad a partir de las matemáticas nos interese predecir el comportamiento futuro de cierto fenómeno natural o proceso social (o quizá cómo fue en el pasado). En este sentido lo primero es formular un modelo matemático que cambie con el tiempo y que permita tratar y estudiar la situación problema en cierto tiempo determinado. Esto produce predicciones que deben validarse a partir de las respuestas obtenidas en el marco de la situación de estudio y de las estimaciones del modelo empleado. Si bien es cierto que las respuestas son variables y dependen del fenómeno de estudio, se considera pertinente destacar que el papel de las matemáticas como herramienta generadora de conocimiento y desarrollo de habilidades ha contribuido en la eficiencia de diversos procesos inmersos en nuestras vidas cotidianas.

La operación inversa de la derivación (que es una parte fundamental del cálculo), la integral, se describe a continuación dentro del marco histórico del cálculo integral.

Historia y nacimiento del cálculo

Los orígenes del cálculo integral se remontan a los cálculos de áreas y volúmenes que Arquímedes de Siracusa (287-212 a.C.) realizó en el siglo III antes de nuestra
era. Aunque hubo que esperar cerca de 2000 años, hasta el siglo xvii, para que se descubriera el cálculo. Varias son las causas de semejante retraso, entre ellas la inexistencia de un sistema de numeración adecuado —en este caso el decimal— así como del desarrollo del álgebra simbólica y la geometría analítica que permitieron el tratamiento algebraico y no sólo geométrico de las curvas, posibilitando los cálculos de tangentes, cuadraturas, máximos y mínimos, entre otros. Todo ello ocurrió a partir del siglo xvii de nuestra era.

El trabajo de Wallis influyó enormemente en Isaac Newton (1642-1727), quien aseguró que el desarrollo del binomio y otras ideas iniciales sobre el cálculo se originaron en su estudio de las obras de Wallis en la época de estudiante en Cambridge. El mismo Wallis propone la siguiente genealogía del cálculo infinitesimal:

- Método de agotamiento (Arquímedes).
- Método de los indivisibles (Cavalieri).
- Aritmética de los infinitos (Wallis).
- Métodos de las series infinitas (Newton).

Ahora bien, Newton en su célebre frase <<Si he llegado a ver más lejos que otros es por qué me subí en hombros de gigantes>>, se refiere entre otros a su maestro y mentor Isaac Barrow (1630-1677). Barrow fue probablemente el científico que estuvo más cerca de descubrir el cálculo infinitesimal. Llegó a las matemáticas en su afán de comprender la teología; de hecho se marchó de su cátedra en Cambridge, cediéndosela a Newton para continuar sus estudios teológicos. En la lección x de su obra *Letiones opticae et geometricae*, Barrow demuestra su versión geométrica del Teorema Fundamental del Cálculo.

En el último cuarto del siglo xvii Newton y Gottfried Wilhelm Leibniz (1646-1716), de manera independiente, sintetizaron a partir de la maraña de
métodos infinitesimales usados por sus predecesores dos conceptos, los que hoy en día llamamos la derivada y la integral de una función. Además desarrollaron las reglas para manipular la derivada —reglas de derivación— y mostraron que ambos conceptos son inversos a través del conocido Teorema fundamental del cálculo. De esta forma nació el cálculo infinitesimal, que sirvió para resolver todos los problemas de cuadraturas, máximos y mínimos, tangentes, centros de gravedad, etcétera, que habían ocupado a sus predecesores; bastaba echar a andar estos dos conceptos nuevos que fundamentan las bases del cálculo infinitesimal.

Investiga en distintas fuentes bibliográficas y elabora en tu cuaderno un cuadro sinóptico donde se identifiquen las necesidades y el tipo de problemas que dieron origen al cálculo infinitesimal.

Recuerda verificar tus respuestas en el Apéndice 1

SEGUNDA PARTE

Siempre he creído que si se reformase la educación de la juventud, se conseguiría reformar el linaje humano.

Gottfried Wilhelm Leibniz (1646-1716).

Si he llegado a ver más lejos que otros, es porque me subí a hombros de gigantes.

Issac Newton (1642-1727).

Antiderivada e integral indefinida

La distancia recorrida por un móvil con velocidad no constante

Al igual que en el caso de la derivada, el concepto de la integral se puede deducir de la necesidad de encontrar respuestas a fenómenos vinculados con el movimiento de los cuerpos. En la primera unidad determinamos la velocidad instantánea de proyectiles en caída libre a partir de la función distancia (véase la sección 1.2), lo cual precisamente nos llevó al concepto de derivada (también llamada operación de derivación de una función). Entonces surge la pregunta obligada, ¿cómo determinar la distancia recorrida por un proyectil en caída libre a partir de la velocidad que se conoce y sabiendo que ésta no es constante? Hablamos de la operación inversa de la derivación, a la cual llamaremos integración o antiderivación.
Antiderivadas

Supongamos que se nos pidió encontrar una función (distancia) G cuya derivada (velocidad instantánea) es $f(x) = 3x^2$. De lo estudiado en la primera unidad sobre derivadas, podemos deducir que: $G(x) = x^3$, debido a que $\frac{d}{dx} [x^3] = 3x^2$, es decir, $G'(x) = f(x)$.

Decimos que la función G es una antiderivada de f.

Determinación de antiderivadas. Para cada una de las siguientes derivadas G, escribe la función original G.

a) $G'(x) = 6x$

b) $G'(x) = x$

c) $G'(x) = \frac{1}{3}x^2$

d) $G'(x) = \frac{1}{x^3}$

e) $G'(x) = \cos x$

¿Cuál fue la estrategia que se utilizó para encontrar a la función G?

Recuerda verificar tus respuestas en el Apéndice 1

Definición de antiderivada

En general, una función G es una antiderivada de f sobre un intervalo I, si $G'(x) = f(x)$ para toda x en el intervalo I.

Es importante señalar que la función G se denomina una antiderivada de f, no la antiderivada de f. Para ver por qué, se debe notar lo siguiente:

$G_1(x) = x^3$, $G_2(x) = x^3 - 4$ y $G_3(x) = x^3 + 61$ son todas antiderivadas de $f(x) = 3x^2$. De hecho, para cualquier constante C, la función dada por $G(x) = x^3 + C$ es una antiderivada de f.

Teorema 1 Antiderivada general

Si la función F es una antiderivada de f sobre un intervalo I, entonces G representa toda la familia de antiderivadas de f sobre el intervalo I si y sólo si la función G tiene la forma: $G(x) = F(x) + C$, para toda x en el intervalo I y donde C es una constante arbitraria.
A partir del teorema anterior es posible representar toda la familia de antiderivadas de una función sumando una constante arbitraria a una antiderivada conocida. Por ejemplo, si se sabe que $\frac{d}{dx}[-4.9x^2] = -9.8x$, es posible representar la familia de todas las antiderivadas de $f(x) = -9.8x$ mediante:

$$G(x) = -4.9x^2 + C$$

Familia de todas las antiderivadas de $f(x) = -9.8x$, donde C es una constante. La constante C se llama constante de integración. La familia de funciones representada por G es la llamada antiderivada general de f, y $G(x) = -4.9x^2 + C$ es la solución general de la ecuación diferencial: $G'(x) = -9.8x$.

Una ecuación diferencial en x y y es una ecuación que comprende a x, y, así como las derivadas de y. De esta forma, $y' = 2x$ y $y = 3x^2 + 4$ son ejemplos de ecuaciones diferenciales.

Ejemplo 1

Resolución de una ecuación diferencial

Encuentra la solución general de la ecuación diferencial $y' = -9.8$.

Solución: En principio, se debe encontrar una función cuya derivada sea -9.8. La función $-9.8x$ es una de tales funciones; en otras palabras, es una antiderivada de -9.8.

A partir del teorema 1 de esta unidad, la solución general de la ecuación diferencial es:

$$y = -9.8x + C$$

En la figura 5 se muestran las gráficas de varias antiderivadas de $y' = -9.8$ (funciones de la forma $y = -9.8x + C$).

![Figura 5](funciones de la forma y = -9.8x + C)
Notación para las antiderivadas

Cuando se resuelve una ecuación diferencial de la forma \(\frac{dy}{dx} = f(x) \) es útil escribirla en su forma diferencial equivalente: \(dy = f(x)\,dx \).

La operación de encontrar todas las soluciones de esta ecuación se llama antiderivación (o integral indefinida) y se indica con el signo de integral, \(\int \). La solución general se denota por:

\[
y = \int f(x)\,dx = F(x) + C
\]

donde \(f(x) \) es llamado integrando. La expresión \(\int f(x)\,dx \) se lee como la antiderivada de \(f \) con respecto a \(x \). Por consiguiente, la diferencial \(dx \) sirve para identificar a \(x \) como la variable de integración. El concepto de integral indefinida es sinónimo de antiderivada.

Nota: en esta unidad siempre que se escribe \(y = \int f(x)\,dx = F(x) + C \), significa que \(F \) es una antiderivada de \(f \) sobre un intervalo.

Ejemplo 2

Resolución de un problema de movimiento de un proyectil en caída libre

En la figura 6 se muestra la gráfica de la función distancia, \(d(t) \), que describe la posición de la pelota en el instante \(t \). La recta tangente es horizontal (pendiente cero) justo cuando la pelota alcanza la máxima altura sobre el nivel del suelo, es decir, la derivada en el valor máximo es igual a cero (vértice de la parábola).
Si se lanza verticalmente una pelota hacia arriba despreciando la resistencia del aire, con una velocidad inicial de 49 metros por segundo desde una altura inicial de 10 metros, como se muestra en la figura 6, entonces el problema es:

a) Determinar la función distancia, \(d(t) \), que describe el movimiento de dicho proyectil en función del tiempo.

b) Encontrar la altura máxima que alcanza la pelota sobre el nivel del suelo y en qué tiempo sucede esto.

Solución

a) Sea \(t = 0 \), el tiempo inicial del fenómeno observado. Si la función \(d(t) \) representa la posición de la pelota en el instante \(t \), entonces, ¿cómo se pueden expresar las dos condiciones iniciales dadas?

\[
d(0) = 10 \text{ metros.} \\
d'(0) = 49 \text{ metros por segundo.}
\]

Ahora bien, la aceleración debida a la gravedad es 9.8 m/s\(^2\) y puesto que la derivada de la velocidad es precisamente la aceleración, se tiene \(d''(t) = -9.8 \), Implicando que

\[
d'(t) = \int d''(t) \, dt = \int -9.8 \, dt = -9.8t + C_1,
\]

de donde al utilizar la velocidad inicial se obtiene:

\[
d'(0) = 49 = -9.8(0) + C_1, \text{ implicando que } C_1 = 49, \text{ por lo que } d'(t) = -9.8t + 49.
\]

Ahora bien, ¿qué se obtiene al integrar \(d'(t) \)?

se obtiene \(d(t) = \int d'(t) \, dt = \int (-9.8t + 49) \, dt = -4.9t^2 + 49t + C_2, \) de donde al utilizar la altura inicial, se tiene: \(d(0) = 10 = -4.9(0)^2 + 49(0) + C_2 \), lo que significa que \(C_2 = 10 \). Por lo tanto la función distancia que describe la posición de la pelota en todo instante \(t \) está dada por:

\[
d(t) = -4.9t^2 + 49t + 10
\]

b) Para determinar la altura máxima que alcanza la pelota sobre el nivel del suelo hacemos uso del concepto de la derivada de la función distancia, \(d(t) \), ya que justo en ese momento la pelota comienza a descender con velocidad instantánea igual a cero. Es decir, ¿qué representa la siguiente fórmula (véase la figura 6)?: \(d'(t) = -9.8t + 49 = 0 \)

Así es, representa geométricamente una recta tangente a la curva \(d(t) \) con pendiente cero. ¿En qué tiempo la pelota alcanza su altura máxima?

\[
\text{Claro, en un tiempo de } t = \frac{-49}{-9.8} = 5 \text{ segundos.}
\]

Al sustituir el valor en la función distancia se tiene que: \(d(5) = -4.9(5)^2 + 49(5) + 10 = 132.5 \) metros es la altura máxima que la pelota alcanza sobre el nivel del suelo.
Nota: se debe observar que la función distancia del ejemplo anterior tiene la forma: \[d(t) = \frac{1}{2} gt^2 + v_0 t + d_0 \], donde \(g = -9.8 \text{ m/s}^2 \), la velocidad inicial es \(v_0 = 49 \text{ m/s} \) y la altura o distancia inicial es \(d_0 = 10 \text{ m} \), una función distancia que estudiamos en la primera unidad y reconocida por Galileo Galilei. sólo que en esta ocasión llegamos a ella a través de la operación inversa de la diferenciación, la integración.

Reglas básicas de integración

La naturaleza inversa de la integración y la derivación puede comprobarse sustituyendo \(F'(x) \) por \(f(x) \) en la definición de integral indefinida, \[\int f(x) \, dx = F(x) + C \], para obtener: \[\int F'(x) \, dx = F(x) + C \], es decir, la integración es la inversa de la derivación. Además si \[\int f(x) \, dx = F(x) + C \] entonces: \[\frac{d}{dx} \left[\int f(x) \, dx \right] = f(x) \], es decir, la derivación es la inversa de la integración.

Este resultado tan importante que conecta a la derivación con la integración como operaciones inversas se estudia a detalle más adelante.

Estas dos ecuaciones permiten obtener las fórmulas de integración directamente de la derivación, como se muestra en la tabla 1, después del ejemplo.

A continuación se presentan ejemplos donde se aplica lo tratado hasta el momento.

Ejemplo 3

Aplicación de las fórmulas de integración

Escribir las antiderivadas de \(4x \).

Solución

Por la regla de la constante múltiple: \[\int 4x \, dx = 4 \int x \, dx \].

Al volver a escribir con \(x = x^1 \): \[4 \int x^1 \, dx \].

Por la regla de la potencia \((n = 1) \): \[= 4 \left(\frac{x^2}{2} \right) + C \].

Simplificando obtenemos: \(2x^2 + C \).

A través de este ejemplo se observa que el patrón general de integración es similar al de la derivación.

Integral original → Volver a escribirla → Integrar → Simplificar
Sean \(f \) y \(g \) dos funciones con respecto a \(x \), mientras que \(k \), \(n \) y \(C \) son constantes.

<table>
<thead>
<tr>
<th>Fórmulas de derivación</th>
<th>Fórmulas de integración</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{d}{dx}[k] = 0)</td>
<td>(\int 0 , dx = C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[x] = 1)</td>
<td>(\int k , dx = kx + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[k \cdot f(x)] = k \cdot f'(x))</td>
<td>(\int k f(x) , dx = k \int f(x) , dx)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x))</td>
<td>(\int [f(x) \pm g(x)] , dx = \int f(x) , dx \pm \int g(x) , dx)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[x^n] = nx^{n-1})</td>
<td>(\int x^n , dx = \frac{x^{n+1}}{n+1} + C, ; n \neq -1)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\ln x] = \frac{1}{x})</td>
<td>(\int \frac{dx}{x} = \ln x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[e^x] = e^x)</td>
<td>(\int e^x , dx = e^x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\operatorname{sen} x] = \cos x)</td>
<td>(\int \cos x , dx = \operatorname{sen} x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\cos x] = - \operatorname{sen} x)</td>
<td>(\int \operatorname{sen} x , dx = -\cos x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\operatorname{tan} x] = \sec^2 x)</td>
<td>(\int \sec^2 x , dx = \operatorname{tan} x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\sec x] = \sec x \tan x)</td>
<td>(\int (\sec x \tan x) , dx = \sec x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\csc x] = - \csc x \cot x)</td>
<td>(\int (\csc x \cot x) , dx = -\csc x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\cot x] = - \csc^2 x)</td>
<td>(\int \csc^2 x , dx = -\cot x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\operatorname{arc sen} x] = \frac{1}{\sqrt{1-x^2}})</td>
<td>(\int \frac{1}{\sqrt{1-x^2}} , dx = \operatorname{arc sen} x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\operatorname{arc tan} x] = \frac{1}{1+x^2})</td>
<td>(\int \frac{dx}{1+x^2} = \operatorname{arc tan} x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\operatorname{arc sec} x] = \frac{1}{</td>
<td>x</td>
</tr>
</tbody>
</table>

Tabla 1: La primera columna permite obtener derivadas de funciones mientras que la segunda determina la antiderivada general o integral indefinida. Se debe observar que la regla de la potencia para la integración tiene la restricción de que \(n \neq -1 \).
Las reglas básicas de integración listadas en la tabla 1 de esta sección permiten integrar cualquier función polinomial, como se muestra a continuación.

Ejemplo 4

Integración de funciones polinomiales

a) \(\int dx = \int 1 \, dx = x + C \)

b) \(\int (3x - 5) \, dx = 3 \int x \, dx - 5 \int dx = 3 \frac{x^2}{2} + C_1 - 5x + C_2 = \frac{3}{2} x^2 - 5x + C \)

c) \(\int (-4x^3 + 2x^2 - x) \, dx = -4 \int x^3 \, dx + 2 \int x^2 \, dx - \int x \, dx \)
\[= -\frac{4}{6} x^6 + \frac{2}{4} x^4 - \frac{1}{2} x^2 + C = -\frac{2}{3} x^6 + \frac{1}{2} x^4 - \frac{1}{2} x^2 + C \]

Ejemplo 5

Volver a escribir antes de integrar

a) \(\int \left(\frac{x + 2}{\sqrt{x}} \right) \, dx = \int \left(\frac{x}{\sqrt{x}} + \frac{2}{\sqrt{x}} \right) \, dx = \int \left(\frac{1}{x^{1/2}} + 2 x^{-1/2} \right) \, dx = \frac{3}{2} x^{1/2} + 2 x^{1/2} + C = \frac{5}{2} x^{1/2} + 4 x^{1/2} + C \)

Nota: cuando se integran cocientes no se debe integrar por separado el numerador y denominador, esto no es válido en la integración y diferenciación.

\[\int \left(\frac{x + 2}{\sqrt{x}} \right) \, dx \neq \frac{\int (x + 2) \, dx}{\int \sqrt{x} \, dx} \]

b) \(\int \frac{\tan x}{\cos^2 x} \, dx = \int \left(\frac{1}{\cos x} \right) \left(\frac{\tan x}{\cos x} \right) \, dx = \int \sec x \tan x \, dx = \sec x + C \)

c) \(\int \left(\frac{x + 2}{\sqrt{x}} \right) \, dx = \int \left(\frac{x}{\sqrt{x}} + \frac{2}{\sqrt{x}} \right) \, dx \)

Ejercicios

En los ejercicios 1 a 3 verifica la igualdad demostrando que la derivada del lado derecho es igual al integrando del lado izquierdo.

1. \(\int \left(-\frac{9}{x^9} \right) \, dx = \frac{3}{x^3} + C \)

2. \(\int (x - 2)(x + 2) \, dx = \frac{1}{3} x^3 - 4x + C \)
3. \[\int \frac{x^2 - 1}{x^2} \, dx = \frac{2(x^2 + 3)}{3\sqrt{x}} + C \]

En los ejercicios 4 a 6 encuentra la solución general de la ecuación diferencial y verifica el resultado por derivación.

4. \[\frac{dy}{dt} = 3t^2 \]

5. \[\frac{dy}{dx} = x^3 \]

6. \[\frac{dy}{d\theta} = \pi \]

En los ejercicios 7 a 15 encuentra la integral indefinida y verifica el resultado por derivación.

7. \[\int (x+3) \, dx \]

8. \[\int (2x - 3x^2) \, dx \]

9. \[\int \frac{1}{x^3} \, dx \]

10. \[\int \frac{1}{\sqrt{x^2}} \, dx \]

11. \[\int y^2 \sqrt{y} \, dy \]

12. \[\int (\tan^2 x + 1) \, dx \]

13. \[\int (2 \sin x + 3 \cos x) \, dx \]

14. \[\int \frac{\cos \theta}{1 - \cos^2 \theta} \, d\theta \]

15. \[\int \frac{x^2 + x + 1}{x^2} \, dx \]

Movimiento vertical

En los ejercicios 16 a 20, utiliza \(a(t) = 9.8 \, \text{m/s}^2 \) como aceleración a causa de la gravedad (desprecia la resistencia del aire).

16. El Gran Cañón del Colorado mide 1,600 metros de profundidad en su parte más profunda. Se suelta una roca desde un borde que se encuentra sobre ese punto. Expresa la altura de la roca en función del tiempo \(t \) en segundos. ¿Cuánto tardará la roca en chocar contra el suelo del fondo del Cañón?

17. Se lanza una pelota de béisbol hacia arriba desde una altura de 2 metros a una velocidad de 10 metros por segundo. Determina la altura máxima que alcanza.

18. ¿A qué velocidad inicial se debe lanzar un objeto hacia arriba desde una altura inicial de 2 metros para que alcance una altura máxima de 200 metros?
19. **Gravedad lunar.** En la Luna la aceleración debida a la gravedad es de $-1.6\, \text{m/s}^2$. Si se deja caer una piedra desde un talud de una colina lunar y choca contra la superficie de la Luna 20 segundos más tarde, ¿qué altura descendió?, ¿qué velocidad tenía cuando se produjo el impacto?

20. **Velocidad de escape.** La velocidad mínima requerida para que un objeto escape de la atracción gravitacional de la Tierra se obtiene mediante la ecuación: \[
\int v\, dv = -GM\int \frac{1}{y^2}\, dy,
\]
donde v es la velocidad del objeto proyectado desde la Tierra, y es la distancia respecto al centro de la Tierra, G es la constante gravitacional universal y M es la masa de la Tierra.

Demuestra que v y y se relacionan por la ecuación: \[
v^2 = v_0^2 + 2GM\left(\frac{1}{y} - \frac{1}{R}\right),\]
donde v_0 es la velocidad inicial del objeto y R es el radio de la Tierra.

Observación: cabe señalar que algunos libros de texto utilizan gR^2 en lugar de GM, donde g representa la fuerza de gravedad en la Tierra. A partir de los siguientes datos se puede verificar que $GM = gR^2$.

- $G = 6.67\times10^{-11}\, \text{N}\cdot\text{m}^2/\text{kg}^2$ (constante de gravitación universal), donde $N = \text{Newton}$, $m = 5.97\times10^{24}\, \text{kg}$ (masa de la Tierra), $R = 6374.366\, \text{m}$ (radio medio de la Tierra), $g = 9.8\, \text{m/s}^2$ (fuerza de gravedad en la Tierra).

Recuerda verificar tus respuestas en el Apéndice 1

El área bajo la curva y el concepto de integral definida

En la geometría euclidiana el rectángulo es una figura a la que se le puede encontrar el área sin tantas complicaciones. Donde la definición del área de un rectángulo es $a = bh$ (base por altura), como se muestra en la figura 7.

A partir de esta definición es posible obtener el área de cualquier región en el plano cuya frontera esté comprendida por líneas rectas. Por ejemplo, el área de un triángulo puede formar un rectángulo cuya área es el doble de la del triángulo. Una vez que se conoce la forma de encontrar el área de un triángulo, se puede determinar el área de cualquier polígono subdividiéndolo en regiones triangulares, como se muestra en la figura 8.

No obstante, el calcular el área de una figura plana cuya frontera no esté formada por segmentos rectos, un círculo por ejemplo, representa un problema más
complicado. Este problema ocupó las mentes de varios pensadores griegos que diseñaron un método para calcular las áreas de figuras planas con fronteras curvas. Arquímedes dio la descripción más clara de este método también llamado de agotamiento, que en esencia es un proceso de límites en el que el área de la región buscada se comprime entre dos polígonos, uno inscrito en la región y el otro circunscrito alrededor de ella. La idea es aproximarse al valor del área, aunque se sabe que por muy buena que sea una aproximación no da el valor exacto deseado, lo cual se establece por medio de una serie infinita de aproximaciones, justamente esto representa la primera idea del cálculo integral. Esta idea contiene de nueva cuenta la noción de límite, que es el concepto fundamental del cálculo diferencial e integral.

Por ejemplo, en la figura 9 se obtiene una aproximación del área de una región circular mediante un polígono inscrito de \(n \) lados y un polígono circunscrito también de \(n \) lados. Para cada valor de \(n \) el área del polígono circunscrito es mayor que el área del círculo. Además, a medida que \(n \) se incrementa, el área de ambos polígonos produce cada vez una mejor aproximación del área del círculo.
El motor rotatorio de Wankel y el problema del área

Nombrado así en honor de Félix Wankel, quien desarrolló sus principios básicos en la década de 1950, el motor rotatorio Wankel representa una alternativa al motor de pistones comúnmente usado en los automóviles. Muchos fabricantes de automóviles, entre ellos Mercedes-Benz, Citroen y Ford, han hecho experimentos con motores rotatorios. El mayor número de vehículos con motores Wankel que transitan en los caminos fueron fabricados por la automotriz Mazda, cuyo diseño de motor rotatorio más actual es el RX-7.

El motor rotatorio Wankel tiene varias ventajas frente al motor de pistones. El tamaño y el peso de un motor rotatorio son aproximadamente la mitad en comparación con los de un motor de pistones de potencia equivalente. Para seguir las comparaciones, un motor V8 tiene cerca de 97 partes móviles importantes, en tanto el motor rotatorio común de dos rotores tiene únicamente tres partes móviles principales. Como resultado, el motor Wankel requiere menos costos de mano de obra y materiales y se disipa menos energía interna.

Aunque son posibles muchos diseños para el motor rotatorio, la configuración más común es un alojamiento de dos lóbulos que contienen un rotor de tres lados, como se muestra en la figura 10. El tamaño del rotor, en comparación con el de la cavidad del alojamiento, es de suma importancia al determinar la razón de compresión y, por consiguiente, la eficiencia de la combustión.
Responde las siguientes preguntas:

1. La región que se muestra en la figura está limitada arriba por la gráfica de la función $f(x) = -2\sqrt{3} + \sqrt{16 - (x - 2)^2}$ y abajo por el eje x. Tu tarea es describir diferentes formas en las que podrías hacer una aproximación del área de la región. Después elije una de las formas y úsala. ¿Qué nivel de exactitud crees que tiene tu aproximación?

2. Ahora que encontraste una aproximación para el área de la región, describe una forma para mejorarla. ¿Te permite la estrategia elegida obtener una aproximación que sea arbitrariamente cercana al área real? Explica por qué.

3. Usa tu aproximación para estimar el área del triángulo abultado que se muestra en la figura 10 en el centro del motor.

Recuerda verificar tus respuestas en el Apéndice 1

Descubrimiento del número pi

El método de agotamiento consiste en aproximar el área del círculo por áreas de polígonos regulares inscritos y circunscritos, en los cuales —por supuesto— la aproximación no es buena si el número de lados es pequeño; pero si consideramos polígonos con un número cada vez mayor de lados, las áreas de éstos se aproximarán cada vez más al área del círculo, como se aprecia en la figura 9.

En cada caso, el área del polígono inscrito es menor que el área del círculo. ¿Qué pasa si incrementamos el número de lados del polígono?
Efectivamente, el polígono incluirá más área del círculo.
Cuando el número de lados n tiende a infinito, ¿cómo se comporta el área del polígono respecto a la del círculo?

Si respondiste algo parecido a: Cada vez se aproximará más hasta casi ser idéntica a la del círculo, mientras mayor número de lados tenga, lo estás haciendo muy bien.
Ya que es fácil determinar una fórmula para el área de un polígono regular de n lados, podemos obtener el área del círculo al encontrar el límite de la fórmula cuando n tiende a infinito.
Usemos el símbolo $P(n)$ para denotar el área de un polígono regular de n lados inscrito en un círculo de radio r. Para obtener una fórmula para $P(n)$ podemos usar el hecho de que cualquier polígono regular de n lados puede ser cortado en triángulos congruentes y así obtenemos el área del polígono como la suma de las áreas de los triángulos.
¿Qué tipo de triángulos se forman? Justifica tu respuesta. (Te recomendamos veas la figura 11)

Cada uno de estos triángulos es isósceles, ya que dos de sus lados son radios del círculo.
El área de cada triángulo puede calcularse al multiplicar un medio de su base por su altura; determinaremos esas dos dimensiones por medio de la trigonometría.
¿Cómo obtienes el ángulo formado por dos lados iguales de cada triángulo?

De acuerdo, se obtiene dividiendo 360° en n partes iguales, es decir, $\theta = \frac{360^\circ}{n}$. ¿Cuánto mide la base de los triángulos?
Sí, la base de estos triángulos está dada por: \(a = 2r \sin \left(\frac{\theta}{2} \right) \), debido a que la función seno se escribe como \(\sin \left(\frac{\theta}{2} \right) = \frac{a}{2r} \).

Dado que la función coseno se escribe \(\cos \left(\frac{\theta}{2} \right) = \frac{b}{r} \) entonces la altura de cada uno de los triángulos está dada por: \(b = r \cos \left(\frac{\theta}{2} \right) \).

A partir lo anterior, ¿cuál es entonces la fórmula para el área de cada triángulo inscrito en el polígono regular de \(n \) lados?

\[
\frac{ab}{2} = \frac{2r^2 \sin \left(\frac{\theta}{2} \right) \cos \left(\frac{\theta}{2} \right)}{2} = r^2 \sin \left(\frac{\theta}{2} \right) \cos \left(\frac{\theta}{2} \right).
\]

Al utilizar la conocida identidad trigonométrica, \(\sin (\theta) = 2 \sin \left(\frac{\theta}{2} \right) \cos \left(\frac{\theta}{2} \right) \), ¿cómo se expresaría entonces la fórmula con la que obtenemos el área de cada triángulo?

De acuerdo, la expresión correcta es: \(\frac{ab}{2} = \frac{r^2 \sin (\theta)}{2} \).

Por lo tanto, el área total de nuestro polígono regular de \(n \) lados, compuesto de \(n \) triángulos isósceles e inscrito en el círculo de radio \(r \) está dada por la fórmula:

\[
P(n) = n r^2 \sin \left(\frac{180^\circ}{n} \right) \cos \left(\frac{180^\circ}{n} \right),
\]

o de forma equivalente

\[
P(n) = \frac{n r^2 \sin \left(\frac{360^\circ}{n} \right)}{2}.
\]

De manera completamente análoga, podemos aproximarnos al área del círculo utilizando polígonos regulares circunscritos (véase la figura 11).

Si \(Q(n) \) es el área del polígono de \(n \) lados circunscrito al círculo, podemos encontrar con un desarrollo matemático similar al anterior que: \(Q(n) = n r^2 \tan \left(\frac{180^\circ}{n} \right) \).

En la tabla siguiente se muestran las áreas de los polígonos inscritos y circunscritos para algunos valores particulares de \(n \) y radio \(r \).
A partir de la tabla, ¿cómo está delimitada el área del círculo por las áreas de los polígonos inscritos y circunscritos? Escribe la expresión matemática correspondiente.

Seguramente lo escribiste así: \(P(n) < A < Q(n) \).
Utiliza los valores que aparecen en el último renglón de la tabla y sustitúyelos en la fórmula que acabas de escribir.

En efecto, el resultado es \(3.141592447 \, r^2 < A < 3.141592757 \, r^2 \).
Por lo que podemos afirmar que con un polígono de 10,000 lados podemos encontrar las primeras 6 cifras decimales correctas del número \(\pi \), el cual multiplicado por \(r^2 \) nos da el área del círculo de radio \(r \): \(A \approx (3.141592) \, r^2 \)
Sabemos que el área del círculo es \(A = \pi r^2 \), por lo que este método nos permite encontrar las cifras decimales que deseemos del número \(\pi \). (\(\pi \)).

Con los recursos que nos proporciona el concepto de límite podemos encontrar la área exacta del círculo al hacer crecer indefinidamente el número de lados del polígono regular inscrito o circunscrito, como el que se desarrolla a continuación, en el que consideramos a 180° como \(\pi \) radianes.

\[
\lim_{n \to \infty} P(n) = A = \lim_{n \to \infty} Q(n)
\]
Entonces, para el caso de polígonos inscritos se tiene que:

\[A = \lim_{n \to \infty} \left(n r^2 \text{sen} \left(\frac{\pi}{n} \right) \cos \left(\frac{\pi}{n} \right) \right); \]

multiplicando y dividiendo por la misma cantidad, \(\left(\frac{\pi}{n} \right) \), y sabiendo que

\[\lim_{x \to 0} \left(\frac{\text{sen} (x)}{x} \right) = 1 \]

y que \(\cos (0) = 1 \), obtenemos:

\[A = \lim_{n \to \infty} \left(\frac{\pi}{n} n r^2 \text{sen} \left(\frac{\pi}{n} \right) \cos \left(\frac{\pi}{n} \right) \right) = \lim_{n \to \infty} \left(\frac{\pi}{n} n r^2 \cos \left(\frac{\pi}{n} \right) \text{sen} \left(\frac{\pi}{n} \right) \right) = \pi r^2, \]

por lo que el área exacta del círculo de radio \(r \) es: \(A = \pi r^2 \). Y luego entonces, descubrimos al enigmático y trascendente número irracional \(\pi \).

Utiliza el área de los polígonos circunscritos, \(Q(n) \), para demostrar que el área del círculo de radio \(r \) es \(\pi r^2 \), es decir, prueba que: \(\lim_{n \to \infty} Q(n) = \pi r^2 \). donde \(Q(n) = n r^2 \tan \left(\frac{180}{n} \right) \) Hazlo en tu cuaderno.

Recuerda verificar tus respuestas en el Apéndice 1

Origen de la integral definida

Es claro que al no contar con el manejo del número cero, sin tener la concepción de manipular procesos infinitos y sólo con la utilización de las propiedades geométricas de las figuras, fue imposible que los griegos avanzaran mucho más en la solución de problemas como la determinación del área exacta de figuras geométricas con frontera curva y por ende en la conformación actual del cálculo matemático. No obstante se han encontrado otros tratados de Arquímedes en donde calcula el área de un sector de la parábola y los volúmenes de superficies. De cualquier forma, los cimientos estaban construidos ya en la Grecia antigua y —al igual que en el caso de las tangentes y la derivada— sería Newton, apoyándose en otros grandes matemáticos, el que resolvería este tipo de problemas y justificaría la necesidad de la integral definida como nuevo concepto matemático.

En la impresionante obra maestra de Issac Newton, *Principios matemáticos de la filosofía natural* (1687), nos encontramos el segundo lema del Libro I, *El movimiento de los cuerpos*, con una de las afirmaciones que pertenecen al descubrimiento del cálculo moderno y que fundamentan los métodos matemáticos de
estudio de fenómenos naturales y procesos sociales. Dicho lema se enuncia a con-
tinuación y se describe geométricamente en la figura 12.

Figura 12 Concepto moderno del área bajo una curva con aproximaciones infinitas de rectángulos inscritos
y circunscritos en determinado intervalo, la integral definida.

Lema II
Si en cualquier figura AaE, delimitada por las líneas rectas Aa, AE y la curva acE, se inscriben cualquier número de paralelogramos Ab, Bc, Cb, etc., comprendidos bajo bases iguales AB, BC, CD, etc., y lados Bb, Cc, y Dd etc., paral-
lelos al lado Aa de la figura, y se completan los paralelogramos aKbl, bLcm, cMdn, etc., entonces si la anchura de esos paralelogramos se supone que irá
disminuyendo y su número aumentando infinitamente, afirmo que las ultimas
razones que guardarán entre si la figura inscrita AkbLcmD, la figura cir-
cuncrita AalbmcmdoE y la figura curva AabcdE son razones de igualdad.

Problema: plásticos y enfriamiento
¿Qué tienen en común las defensas de un Corvette, las pantimedias y las bolsas para la
basura? Todas están hechas de plástico. La palabra griega plastikos, que significa “capaz
de ser formado”, fue modificada para dar nombre a la más variada familia de materiales
jamás creada. Desde que se presentó la baquelita en 1909, la industria de los plásticos
se ha ampliado continuamente, a tal punto que hoy en día éstos se usan en casi todos
los aspectos de la vida cotidiana.

Hay varios métodos para moldear los productos plásticos; uno de los más comunes
es el vaciado en caliente de resina plástica en un molde. La temperatura de la resina lí-
quida es de más de 149°C. Después el molde se templ a en un sistema de enfriamiento
que se mantiene a 14°C antes de extraer la pieza moldeada. Para reducir el costo, las
partes se separan con rapidez, permitiendo que el molde vuelva a usarse tan pronto
como sea posible. Pero extraer la pieza cuando aún está muy caliente puede causarle
deformaciones o perforaciones. La rapidez a la que se enfrian los objetos es, por lo
tanto, de suma importancia.
Para ilustrar la rapidez de enfriamiento, se empleó una calculadora científica con funciones de graficación para medir la temperatura de una taza de agua durante un periodo de 40 segundos. La temperatura medida del ambiente fue de 20.86 °C y la del agua, en el instante \(t = 0 \), fue de 74.21°C. En el siguiente gráfico de dispersión se muestran los resultados obtenidos al medir la temperatura del agua en la taza a lo largo de los 40 segundos del experimento.

Responde las siguientes preguntas.

1. Describe el patrón de comportamiento de los puntos de temperatura respecto al tiempo. ¿La rapidez con la que cambia la temperatura parece incrementar, disminuir o permanece constante? Justifica tu respuesta.

2. Imagina una curva que pase por los puntos de la gráfica. ¿Cómo esperas que se comporte la curva cuando aumenta el valor del tiempo? ¿Crees que la curva se cruze con la recta \(T = 20.86 ^\circ C \)? Explica y justifica tu respuesta.

3. ¿La derivada de una función que modela los puntos aumenta, disminuye o es constante? Explica tu razonamiento.

4. La información de la gráfica puede modelarse matemáticamente mediante una función de la forma: \(T = a(b^t) + c \).

 Encuentra los valores de \(a, b \) y \(c \) que produzcan un modelo matemático razonable. La variable \(T \) representa la temperatura medida en el agua de la taza, mientras que la variable \(t \) es el tiempo transcurrido del experimento.

Recuerda verificar tus respuestas en el Apéndice 1.
El concepto de integral definida a partir del área bajo la curva

Vamos a considerar el problema de encontrar el área de una región determinada A en el plano, delimitada por la recta vertical $x = a$ y $x = b$, el eje x, y acotada superiormente por la gráfica de una función positiva $f(x)$ definida en el intervalo cerrado $[a, b]$. Una región de este tipo se ilustra en la figura 13, donde la curva $y = f(x)$ no es necesariamente una línea recta.

La respuesta a este problema se obtuvo gracias a una muy buena idea. Se divide la región en subregiones pequeñas a fin de que el valor de su área se pueda aproximar mediante rectángulos u otras figuras geométricas simples (cuyas áreas se sabe cómo calcular). Así es como funciona: primero se realiza la partición, es decir, se divide el intervalo $[a, b]$ en n-subintervalos (partición), de preferencia con la misma anchura Δx.

$x_0 = a < x_1 < x_2 < \ldots < x_n = b$ con $x_i - x_{i-1} = \Delta x = \frac{b-a}{n}$ para $i = 1, 2, 3, 4, \ldots, n$.

Se debe notar que la partición es: $x_0 = a$, $x_1 = x_0 + \Delta x$, $x_2 = x_0 + 2\Delta x$, \ldots, $x_n = x_0 + n\Delta x = x_0 + \frac{n(b-a)}{n} = b$. Ahora bien, si queremos aproximar el área de la región A por rectángulos, entonces sólo nos tenemos que preocupar por determinar...
el límite superior (altura) de cada rectángulo (ya que cada subintervalo representa
la base de cada rectángulo). La manera más fácil de elegir la altura de cada rectán-
gulo es elegir el valor de la función $f(x)$ en el
punto extremo de la izquierda (véase la figu-
ra 14) de cada subintervalo, o en el punto
extremo derecho (figura 15) de los pequeños
intervalos Δx.

Debe notarse que en la figura 14, la suma
de los n rectángulos se denota con $S(n)$ tam-
bién llamada suma por la izquierda,

$$S(n) = R_1 + R_2 + R_3 + \ldots + R_n.$$

¿Qué expresión se obtiene al usar base
por altura de cada rectángulo?

$$S(n) = \Delta x \left[f(x_0) + f(x_1) + f(x_2) + f(x_3) + \ldots + f(x_{n-1}) \right]$$

Usando la notación de sumatoria (véanse sus propiedades al final de esta sec-
ción) obtenemos: $S(n) = \Delta x \left[\sum_{i=0}^{n-1} f(x_i) \right] = \Delta x \left[\sum_{i=1}^{n} f(x_{i-1}) \right]$, donde i es el índice
sumatoria, $f(x_i)$ es el término i-ésimo de la suma, $n(n-1)$ y $1(0)$ son los límites superior e inferior de la sumatoria respectivamente.

De igual forma, se advierte que en la fi-
gura 15, la suma de los n rectángulos es de
notada con $S(n)$, llamada también suma
por la derecha, $S(n) = R_1 + R_2 + R_3 + \ldots + R_n$.

Al usar base por altura de cada rectángulo se tiene que:

$$S(n) = \Delta x \left[f(x_1) + f(x_2) + f(x_3) + f(x_4) + \ldots + f(x_n) \right]$$

Si utilizamos la notación de sumatoria
obtenemos: $S(n) = \Delta x \left[\sum_{i=1}^{n} f(x_i) \right]$.

Figura 14 Aproximación de la región A usando rectángulos con altura elegida a partir de seleccionar el valor extremo izquierdo de cada Δx.

Figura 15 Aproximación de la región A usando rectángulos con altura elegida a partir de seleccionar el valor extremo derecho de cada Δx.

139
En la siguiente definición de una suma de Riemann, y previa a la definición de integral definida, se debe observar que la función f no tiene restricciones excepto que está definida en el intervalo $[a, b]$; esto es importante ya que veremos más adelante que al estudiar áreas bajo la curva se le pedirá a la función que sea continua y no negativa. No obstante, la suma de Riemann no sólo permite tratar el problema de áreas, sino que es posible utilizarla para muchas aplicaciones que comprenden el límite de una suma, por ejemplo determinar cantidades tan diversas como la longitud de un arco, el valor promedio, centroides, volúmenes, trabajo, áreas superficiales, etcétera.

Definición de una suma de Riemann

Sea f definida en el intervalo cerrado $[a, b]$ y sea Δ una partición de $[a, b]$ dada por $x_0 = a < x_1 < x_2 < \ldots < x_n = b$ con $x_i - x_{i-1} = \Delta x_i = \Delta x = \frac{b-a}{n}$ para $i = 1, 2, 3, 4, \ldots, n$.

Donde Δx_i es la longitud del i-ésimo subintervallno. Si c_i representa cualquier punto en el i-ésimo intervalo, entonces la suma $\sum_{i=1}^{n} f(c_i) \Delta x_i$, $x_{i-1} \leq c_i \leq x_i$ se llama suma de Riemann de f para la división de Δ.

Regresando al problema planteado, y refiriéndonos a ambas figuras anteriores (14 y 15) se aprecia que: $S(n) < A < \overline{S(n)}$. Ambas desigualdades se cumplen cuando se trata de funciones definidas positivas y crecientes en el intervalo. Éste es un caso bastante similar al del área del círculo de radio r. Ahora bien, si el número de n rectángulos es muy grande o, de forma equivalente, si Δx es muy pequeño, entonces el valor de la suma de las áreas rectangulares debe parecerse mucho al área de la región A que deseamos definir.

Como se puede apreciar, cuando Δx se acerca cada vez más a cero (Δx tiende a cero), entonces n se incrementa indefinidamente (n tiende a infinito) y, en consecuencia se observa que tanto $\underline{S(n)}$ como $\overline{S(n)}$ se aproximan al valor exacto del área de la región A. Y precisamente, este es el concepto de límite una vez más! En otras palabras, se tiene que:

$$
\lim_{n \to \infty} S(n) = A = \lim_{n \to \infty} \overline{S(n)} \Leftrightarrow \lim_{\Delta x \to 0} \left[\sum_{i=0}^{n-1} f(x_i) \Delta x \right] = A = \lim_{\Delta x \to 0} \left[\sum_{i=1}^{n} f(x_i) \Delta x \right],
$$

siempre que el límite exista.

El límite anterior es uno de los conceptos fundamentales de cálculo y se llama la integral definida de la función f desde el punto a hasta el punto b del intervalo definido.
Definición de la integral definida de una función

Sea \(f \) una función que está definida en un intervalo cerrado \([a, b] \). La integral definida de la función \(f \) desde el extremo \(a \) hasta \(b \), denotada por \(\int_a^b f(x) \, dx \), es la siguiente:

\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \left[\sum_{i=0}^{n-1} f(x_i) \Delta x \right] = \lim_{n \to \infty} \left[\sum_{i=1}^{n} f(x_i) \Delta x \right] = \lim_{n \to \infty} \left[\sum_{i=1}^{n} f(x_i) \Delta x_i \right],
\]

siempre que el límite exista.

Si la integral definida de \(f \) desde \(a \) hasta \(b \) existe, entonces se dice que \(f \) es integrable sobre el intervalo cerrado \([a, b] \), y por ende se afirma que la integral existe al menos en dicho intervalo. El símbolo \(\int \) es el signo de la integral (primera letra de la palabra suma). El número \(a \) y \(b \) son los límites de integración, inferior y superior respectivamente. La expresión \(f(x) \) se llama integrando. El símbolo de diferencial \(dx \) está asociado con el incremento \(\Delta x \) y cuya longitud se denota mediante \(||\Delta|| \) (véase la figura 16).

Figura 16 La integral definida puede representar el área bajo la curva descrita por la función \(f(x) \).

No es una coincidencia que la notación para las integrales definidas sea similar a la que se usa para las integrales indefinidas estudiadas. En la siguiente sección se dirá el por qué de ello, cuando se analice el Teorema Fundamental del Cálculo. Por ahora es importante señalar que las integrales definidas y las indefinidas son identidades diferentes. Una integral definida es un número, mientras que una integral indefinida es una familia de funciones (véase el teorema 1 de esta unidad).
Una condición suficiente para que una función f sea integrable en $[a, b]$ es que sea continua en dicho intervalo. La demostración de este teorema rebasa el propósito de este libro.

Teorema 2 La continuidad implica integrabilidad

Si una función f es continua sobre el intervalo cerrado $[a, b]$, entonces f es integrable en $[a, b]$.

1. ¿Es verdadero lo inverso del teorema 2? Es decir, si una función es integrable, ¿tiene que ser continua? Explica tu razonamiento y brinda algunos ejemplos.

2. Describe la relación entre continuidad, diferenciación e integrabilidad. ¿Cuál es la condición más necesaria? ¿Cuál la menos?

3. ¿Cuáles condiciones comprenden a otras condiciones?

Recuerda verificar tus respuestas en el Apéndice 1

Antes de plantear y resolver problemas a partir del uso de la integral definida es importante tomar en cuenta las propiedades de la sumatoria y las fórmulas básicas que resultan de gran utilidad, sobre todo para la suma de potencias inmersa en diversos problemas teóricos y prácticos.
Propiedades de la sumatoria (notación sigma)
1. \(\sum k f(x_i) = k \sum f(x_i) \) siendo \(k \) una constante.
2. \(\sum f(x_i) + g(x_i) = \sum f(x_i) + \sum g(x_i) \)

Fórmulas básicas de la sumatoria
1. \(\sum_{i=1}^{n} k = kn \) siendo \(k \) una constante.
2. \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)
3. \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \)
4. \(\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2} \right)^2 \)

Ahora tenemos las herramientas matemáticas básicas del cálculo necesarias para tratar diversos problemas.

Ejemplo 1

Evaluación de una integral definida como un límite.
Evalúa la integral definida \(\int_{-2}^{2} 2x \, dx \).

Solución. La función \(f(x) = 2x \) es integrable en el intervalo \([-2, 1]\), ya que es continua en dicho intervalo (véase la figura 17). La longitud de cada uno de los \(n \) subintervalos de la partición es:

\[\Delta x_i = \frac{b-a}{n} = \frac{1-(-2)}{n} = \frac{3}{n} \]

Figura 17. Debido a que la integral definida es negativa, no representa el área de la región delimitada.
(Continuación.)

Al seleccionar x_i como el punto extremo derecho de cada intervalo obtenemos:

$$f(x_i) = 2(a + i \Delta x) = 2\left(-2 + \frac{3i}{n}\right).$$

De esta forma la integral definida está dada por

$$\int_{a}^{b} 2x \, dx = \lim_{\Delta \rightarrow 0} \sum_{i=1}^{n} f(x_i) \Delta x,$$

$$= \lim_{n \rightarrow \infty} \left[\sum_{i=1}^{n} 2 \left(-2 + \frac{3i}{n}\right) \left(\frac{3}{n}\right) \right] = \lim_{n \rightarrow \infty} \left[\frac{6}{n} \sum_{i=1}^{n} \left(-2 + \frac{3i}{n}\right) \right] = \lim_{n \rightarrow \infty} \left[\left(-12 + 9 + \frac{9}{n}\right) \right] = \int_{1}^{2} 2x \, dx = -3.$$

Observación: En virtud de que la integral definida en el ejemplo anterior es negativa, no representa el área de la región descrita en la figura 17. Las integrales definidas pueden ser positivas, negativas o cero. Para que una integral pueda identificarse con el área de cierta región (como se definió al inicio de esta sección), la función f debe ser continua y no negativa sobre el intervalo cerrado $[a, b]$, como se indica en el siguiente teorema.

Teorema 3 La integral definida como el área de una región

Si f es continua y no negativa sobre el intervalo $[a, b]$, entonces el área de la región acotada por las gráficas de f, el eje x y las rectas verticales $x = a$ y $x = b$ está dada por: $\text{Área} = \int_{a}^{b} f(x) \, dx$. (véase la figura 18.)

Figura 18 La integral definida es posible utilizarla para determinar el área limitada por la gráfica de la función f, el eje x y las rectas $x = a$ y $x = b$. La condición necesaria es que la función f debe ser continua y no negativa en el intervalo definido.

Ejemplo 2

Región acotada por la gráfica de la función f

Determina el área de la región acotada por la gráfica de $f(x) = 4x - x^2$ y el eje x, como se muestra en la figura 19.
Solución. En virtud de que la función \(f \) es continua y no negativa en el intervalo \([0, 4]\), el área de la región (por el teorema 4) es:

Ahora bien, para encontrar el valor exacto del área hacemos uso de la definición de límite de la integral definida. Lo primero es definir \(\Delta x \) como la longitud de cada uno de los \(n \) subintervalos de la partición del intervalo \([0, 4]\), es decir,

\[
\Delta x_i = \Delta x = \frac{b-a}{n} = \frac{4-0}{n} = \frac{4}{n}.
\]

Al seleccionar \(x_i \) como el punto extremo derecho de cada intervalo obtenemos

\[
f(x_i) = 4(a+i\Delta x) - (a+i\Delta x)^2 = 4\left(\frac{4i}{n}\right) - \left(\frac{4i}{n}\right)^2.
\]

De esta forma, la integral definida está dada por:

\[
\int_0^4 (4x - x^2) \, dx = \lim_{n \to \infty} \left[\sum_{i=1}^{n} f(x_i) \Delta x \right]
\]

\[
= \lim_{n \to \infty} \left[\sum_{i=1}^{n} \left(4\left(\frac{4i}{n}\right) - \left(\frac{4i}{n}\right)^2 \right) \right] = \lim_{n \to \infty} \left[\sum_{i=1}^{n} \left(\frac{4}{n} \right) \sum_{i=1}^{n} \left(\frac{4i}{n} - \left(\frac{4i}{n}\right)^2 \right) \right]
\]

\[
= \lim_{n \to \infty} \left[\frac{4(16)}{n^3} \left(\frac{n^2 + n}{2} \right) - \frac{1}{n^2} \left(\frac{2n^3 + 3n^2 + n}{6} \right) \right]
\]

\[
= \lim_{n \to \infty} \left[\frac{32}{3} \right] = 32 - \frac{64}{3} \text{ unidades cuadradas.}
\]

De forma similar al trabajo realizado en los ejemplos anteriores de la sección, determina lo que se te pide a continuación. Trabaja en tu cuaderno.

1. Determina las sumas \(S(n) \) y \(\tilde{S}(n) \) de la región acotada por la gráfica de \(f(x) = x^2 \) y el eje \(x \) entre \(x = 0 \) y \(x = 2 \).

2. Encuentra el área de la región acotada por la gráfica de \(f(x) = x^3 \), el eje \(x \) y las rectas verticales \(x = 0 \) y \(x = 1 \). Realiza la gráfica de la región acotada.
3. Encuentra el área de la región acotada por la gráfica de \(f(x) = 4 - x^2 \), el eje \(x \) y las rectas verticales \(x = 1 \) y \(x = 2 \). Realiza la gráfica de la región acotada.

4. Considera las siguientes funciones: \(f(x) = 2x + 5 \), \(g(x) = (x + 1)^2 \), \(h(x) = x^3 + 2 \).
 a) Aproxima el área debajo de las funciones dadas, desde \(x = 1 \) hasta \(x = 2 \), usando tres rectángulos considerando los puntos extremos de la derecha. Enseguida, mejora tu aproximación utilizando seis rectángulos. Dibuja las gráficas de las funciones y los rectángulos de aproximación.
 b) Repite el inciso a) con los puntos extremos de la izquierda.
 c) Dividiendo el intervalo \([-1, 2]\) en \(n \) subintervalos iguales y construyendo rectángulos (considerando los puntos extremos de la derecha y de base \(\left(\frac{3}{n}\right) \)), encuentra el valor del área exacta debajo de las funciones dadas, aplicando el límite cuando \(n \) tiende a infinito. Recuerda que:
 \[
 \sum_{i=1}^{n} f(x_i) =
 \begin{cases}
 \frac{n(n+1)}{2} & \text{para } f(x) = x^2 \\
 \end{cases}
 \]
 \[
 \sum_{i=1}^{n} f(x_i) =
 \begin{cases}
 \frac{n(n+1)(2n+1)}{6} & \text{para } f(x) = x^3 \\
 \end{cases}
 \]
 \[
 \sum_{i=1}^{n} f(x_i) =
 \begin{cases}
 \frac{n(n+1)^2}{2} & \text{para } f(x) = x^4 \\
 \end{cases}
 \]

5. Investiga y realiza un resumen de 4 cuartillas, en tu cuaderno de trabajo, sobre la bibliografía y los aportes al cálculo que hicieron Leibniz y Riemann.

Recuerda verificar tus respuestas en el Apéndice 1

Propiedades de las integrales definidas

La definición de integral definida de \(f \) sobre el intervalo \([a, b]\) especifica que \(a < b \). Sin embargo ahora es conveniente ampliar esa definición para que abarque los casos en los que \(a = b \) o bien cuando los límites de integración se intercambien.

Geométricamente las siguientes definiciones especiales implican tratar un área de cierta región de ancho cero y otra de altura finita igual a cero.

Definición de dos integrales definidas especiales:

1. Si la función \(f \) se define en \(x = a \), entonces \(\int_{a}^{a} f(x) \, dx = 0 \).
2. Si la función \(f \) es integrable en \([a, b]\), entonces \(\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx \).
Ahora bien, dado que la integral definida se define como el límite de una suma, hereda las propiedades de la sumatoria enunciadas en la sección anterior.

Teorema 4 Propiedades de las integrales definidas
Si \(f \) y \(g \) son dos funciones integrables sobre \([a, b]\) y \(k \) es una constante, entonces las funciones \(kf \) y \(f \pm g \) son integrables sobre \([a, b]\), de donde

\[
\int_{a}^{b} kf(x) \, dx = k \int_{a}^{b} f(x) \, dx
\]

\[
\int_{a}^{b} [f(x) \pm g(x)] \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx
\]

Nota: la segunda propiedad del teorema 4 puede ampliarse con el fin de abarcar cualquier número finito de funciones.

¿Cierro o falso? En los ejercicios siguientes determina si la afirmación es cierta o falsa. En caso de que sea falsa, explica por qué, u ofrece un ejemplo que justifique que es falsa.

1. \[\int_{a}^{b} [f(x) - g(x)] \, dx = \int_{a}^{b} f(x) \, dx - \int_{a}^{b} g(x) \, dx \]

2. \[\int_{a}^{b} [f(x)g(x)] \, dx = \left[\int_{a}^{b} f(x) \, dx \right] \left[\int_{a}^{b} g(x) \, dx \right] \]

3. Si la norma de una partición se aproxima a cero, entonces el número de subintervalos se aproxima a infinito.

4. Si la función \(f \) aumenta sobre el intervalo \([a, b]\), entonces el valor mínimo de \(f(x) \) en \([a, b]\) es \(f(a) \).
5. El valor de $\int_{a}^{b} f(x) \, dx$ debe ser positivo.

6. Si $\int_{a}^{b} f(x) \, dx > 0$, entonces la función f es no negativa para todas las x en $[a, b]$.

Recuerda verificar tus respuestas en el Apéndice 1

El teorema fundamental del cálculo (conexión de las operaciones inversas)

Hasta el momento se han presentado las dos partes principales del cálculo: el diferencial, introducido en la primera unidad con la velocidad instantánea y el problema de la recta tangente, y el cálculo integral, introducido en esta unidad a partir de la distancia que recorre un móvil con velocidad no constante y el problema del área. En este punto parece complicado establecer la conexión que existe entre los diferentes problemas tratados y cuyo estudio fundamentó el descubrimiento de las dos partes fundamentales del cálculo matemático.

Issac Newton y Gottfried Leibniz descubrieron dicha conexión, cada cual por su lado. Esa conexión se expresa en un teorema que con toda propiedad se llama **Teorema Fundamental del Cálculo**.

De modo informal el teorema señala lo evidente, que la derivación e integración (definida) son operaciones inversas, en el mismo sentido que lo son la división y la multiplicación. Para reflexionar sobre el modo en que Newton y Leibniz podrían haber anticipado esta relación, considera las aproximaciones mostradas en la figura 20.

Figura 20 La derivación y la integración definida tienen una relación inversa. (a) Derivación. (b) Integración definida.
Cuando se define la pendiente de la recta tangente, se usa el cociente $\Delta y/\Delta x$ (pendiente de la recta secante). De igual forma, cuando se define el área de una región bajo la curva se utiliza el producto $\Delta y \Delta x$ (área de un rectángulo). El teorema fundamental del cálculo expresa que los procesos para hallar límites (usados en la derivada y en la integral definida) conservan esta relación inversa. La demostración de este teorema rebasa el propósito de esta obra.

En esta unidad se ha usado el signo de integral para denotar una antiderivada (una familia de funciones) y una integral definida (un número).

Antiderivación: $\int f(x) \, dx$, Integración definida: $\int_{a}^{b} f(x) \, dx$.

El uso del mismo símbolo para ambas operaciones hace que parezcan estar relacionadas, sin embargo en los albores del cálculo no se sabía que existiese relación alguna entre ellas.

¿Crees que el símbolo \int se usó primero para denotar la antiderivación o para la integración definida? Elabora un ensayo de máximo 2 cuartillas en donde expliques tu razonamiento y justifica la respuesta utilizando la bibliografía sugerida al final del libro o bien consultando páginas de internet.

Recuerda verificar tus respuestas en el Apéndice 1

Teorema 5 Teorema fundamental del cálculo

Si una función f es continua en $x \in [a, b]$, entonces $G(x) = \int_{a}^{x} f(t) \, dt$ es derivable en x_0 y $G'(x_0) = f(x_0)$.

En la notación de Leibniz podemos expresar el resultado del teorema como

$$\frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x),$$

o bien

$$\frac{d}{dx} \int_{a}^{b} f = f$$

Cálculo de integrales definidas mediante el teorema fundamental del cálculo.

Ejemplo 1

A partir del teorema fundamental del cálculo, encuentra: $\int_{2}^{3} t^3 \, dt$

Solución. En el cálculo de integrales por este método, realizaremos los siguientes cuatro pasos: (Continúa...)
Cálculo en fenómenos naturales y procesos sociales

Paso 1: consideramos a la integral como función del extremo superior.

\[G(x) = \int_0^x t^3 \, dt, \] y posteriormente trataremos de encontrar una expresión más operativa para \(G(x) \), pues la integral buscada es \(G(3) \).

Paso 2: utilizamos el teorema fundamental del cálculo (TFC).

Por el TFC, \(G'(x_0) = x_0^4 \), para todo \(x_0 \in [2, 3] \), lo cual lo escribiremos genéricamente como \(G'(x) = x^4 \), es decir este teorema nos da información sobre la derivada de la función que buscamos, en este caso sabemos que \(x^4 \) es una función cuya derivada es \(x^3 \), pero en general la derivada no se altera si le sumamos una constante arbitraria, lo cual nos lleva a que \(G(x) = \frac{x^4}{4} + C \) es la antiderivada general. En general de manera esquemática diremos que:

\[G'(x) = x^3 \Rightarrow G(x) = \frac{x^4}{4} + C, \] lo cual, salvo la constante \(C \) por determinar, nos da una expresión más operativa para \(G(x) \).

Paso 3: determinamos la constante de integración \(C \).

 Nótese que tenemos dos expresiones para \(G(x) \): \(G(x) = \frac{x^4}{4} + C \) y \(G(x) = \int_0^x t^3 \, dt \).

Para determinar la constante \(C \), debemos conocer la integral en algún valor del intervalo, que en este caso es \(x = 2 \), es decir, \(G(2) = \int_0^2 t^3 \, dt = 0 \), y evaluando en la otra expresión \(G(2) = 4 + C \).

Igualando ambas expresiones obtenemos: \(4 + C = 0 \Rightarrow C = -4 \), obteniendo así el valor de la constante de integración.

Paso 4: evaluamos \(G(3) \) para obtener el valor de la integral definida.

Una vez determinada la constante de integración \(C \), queda completamente determinada la expresión para la función \(G \): \(G(x) = \frac{x^4}{4} - 4 \), y por lo tanto \(\int_2^3 t^3 \, dt = G(3) = \frac{3^4}{4} - 4 = \frac{65}{4} \), es decir, \(\int_2^3 t^3 \, dt = \frac{65}{4} \).

Ejemplo 2

A partir del teorema fundamental del cálculo, encuentra \(\int_0^\pi \sin(t) \, dt \)

Solución. Cada una de las siguientes expresiones corresponden a los primeros tres pasos descritos en el ejercicio anterior:

\[G(x) = \int_0^x \sin(t) \, dt \Rightarrow G'(x) = \sin(x) \Rightarrow G(x) = -\cos(x) + C \]

Para determinar la constante \(C \), evaluamos en \(x = 0 \), \(G(0) = \int_0^\pi \sin(t) \, dt = 0 \), y al evaluar en la otra expresión \(G(0) = -1 + C \).

Igualando ambas expresiones obtenemos \(-1 + C = 0\); obteniendo el valor de \(C = 1 \), y en consecuencia: \(\int_0^\pi \sin(t) \, dt = G(\pi) = -\cos(\pi) + 1 = 2 \). Es decir, \(\int_0^\pi \sin(t) \, dt = 2 \).
Observación: como habrás notado en el cálculo de las integrales definidas anteriores usando el TFC, la parte medular del procedimiento es encontrar una función que al derivarse nos dé la función f que queremos integrar, a la que hemos llamado antiderivada de f a partir de lo tratado en el inicio de la unidad. El valor de la constante de integración es la antiderivada evaluada en el extremo izquierdo del intervalo de integración y finalmente el valor de la integral definida es la antiderivada evaluada en el extremo derecho menos la antiderivada evaluada en el extremo izquierdo, como se asienta en el siguiente resultado, mismo que es consecuencia inmediata del Teorema Fundamental del Cálculo, por lo que se le llama corolario.

Corolario del Teorema Fundamental del Cálculo (TFC), también llamado Segundo Teorema Fundamental del Cálculo.

Sea f una función continua en el intervalo $[a, b]$ y la función $g(x)$ una antiderivada de f, es decir satisface $g'(x) = f(x)$, entonces

$$\int_a^b f(x) \, dx = g(b) - g(a).$$

Demostración: la prueba de este resultado consiste en realizar los mismos pasos descritos al tratar los ejemplos anteriores. A partir del teorema fundamental del cálculo, definimos: $G(x) = \int_a^x f(t) \, dt$, lo cual implica que: $G'(x) = f(x) \Rightarrow G(x) = g(x) + C$.

Para determinar la constante de integración C evaluamos en $x = a$ las dos expresiones obtenidas para $G(x)$:

$$G(a) = \int_a^a f(t) \, dt = 0 \quad \text{y} \quad G(a) = g(a) + C \Rightarrow g(a) + C = 0 \Rightarrow C = -g(a),$$

y por lo tanto

$$G(x) = g(x) - g(a).$$

Y el valor de la integral: $\int_a^b f(t) \, dt = G(b) = g(b) - g(a)$, que es lo que deseábamos demostrar.

Ejemplo 3

Utilizando el corolario del TFC, evalúa la integral $\int_{\frac{3}{2}}^{\frac{3}{2}} x^3 \, dx$

Solución. sólo hay que encontrar una función g que satisfaga $g'(x) = x^3$ y una de tales funciones es $g(x) = \frac{x^4}{4}$, y en consecuencia $\int_{\frac{3}{2}}^{\frac{3}{2}} x^3 \, dx = g(3) - g(2) = \left(\frac{3}{4}\right)^4 - \left(\frac{2}{4}\right)^4 = \frac{81 - 16}{16} = \frac{65}{4}$. (véase el ejemplo 1 del TFC).
1. Explica qué se quiere decir con la proposición “la derivación y la integración son operaciones o transformaciones inversas”.

2. Sea \(G(x) = \int_{-3}^{x} f(t) \, dt \), donde \(f \) es la función cuya representación se ilustra en el gráfico 2.
 a) Evalúa \(G(-3) \), \(G(-2) \), \(G(-1) \), \(G(0) \), \(G(1) \), \(G(2) \), \(G(3) \) y \(G(4) \). Realiza los cálculos de la actividad en tu cuaderno de notas.
 b) ¿Sobre cuáles intervalos la función \(G \) es creciente?
 c) ¿Dónde tiene la función \(G \) un valor máximo?
 d) Dibuja una gráfica aproximada de la función \(G \).

3. En los gráficos 3 y 4 que se muestran a continuación se considera la gráfica de la función \(f(t) \) definida en los respectivos intervalos. Determina para cada gráfico, utilizando el Teorema Fundamental del Cálculo, la función \(G(x) = \int_{a}^{x} f(t) \, dt \), realiza su gráfica y verifica que \(G \) es una función continua en el intervalo definido en cada gráfico.

4. Para cada uno de los siguientes incisos realiza un esquema del área representada por \(G(x) \). Después, encuentra \(G(x) \) de dos maneras: la primera mediante la aplicación del Teorema Fundamental del Cálculo (TFC) y la segunda evaluando la integral con la aplicación del corolario del TFC y después derivando.
 a) \(G(x) = \int_{0}^{x} (1+t)^2 \, dt \)
 b) \(G(x) = \int_{\pi}^{x} [2+\cos(t)] \, dt \)
En los ejercicios 5 a 7 determina si la afirmación es cierta o falsa. En caso de que sea falsa explica por qué o brinda un ejemplo que muestre por qué es falsa.

5. Si \(F'(x) = G'(x) \) sobre el intervalo cerrado \([a, b]\), entonces \(F(b) - F(a) = G(b) - G(a) \).

6. Si la función \(f \) es continua sobre \([a, b]\), entonces \(f \) es integrable sobre \([a, b]\).

7. \(\int_{-1}^{1} x^{-2} \, dx = \left[-\frac{1}{x} \right]_{-1}^{1} = (-1) - 1 = -2 \).

Movimiento rectilíneo

En los ejercicios 8 a 10 considera una partícula que se desplaza a lo largo del eje \(x \), donde \(x(t) \) es la posición (función distancia) de la partícula en el tiempo \(t \), \(x'(t) \) es la velocidad y \(\int_a^b |x'(t)| \, dt \) es la distancia que la partícula viaja en el intervalo de tiempo definido.

8. La función distancia (de posición) es: \(x(t) = t^3 - 6t^2 + 9t - 2 \), \(0 \leq t \leq 5 \).

 Encuentra la distancia total que viaja la partícula en 5 unidades de tiempo.

9. Repite el ejercicio 8 para la función distancia dada por \(x(t) = (t-1)(t-3)^2 \), \(0 \leq t \leq 5 \).

10. Una partícula se desplaza a lo largo del eje \(x \) con velocidad \(v(t) = \frac{1}{\sqrt{t}} \), \(t > 0 \). En el tiempo \(t = 1 \), su posición es \(x = 4 \). Encuentra la distancia total recorrida por la partícula en el intervalo \(0 \leq t \leq 5 \).

El siguiente ejercicio representa una demostración práctica del Teorema Fundamental del Cálculo utilizando tecnología.

11. Elabora la gráfica de la función \(y_1 = \text{sen}^2(t) \) sobre el intervalo \(0 \leq t \leq \pi \). Sea \(F(x) \) la siguiente función de \(F(x) = \int_0^x \text{sen}^2(t) \, dt \)

 a) Completa la tabla y explica por qué los valores de \(F \) van en aumento.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(0)</th>
<th>(\pi/6)</th>
<th>(\pi/3)</th>
<th>(\pi/2)</th>
<th>(2\pi/3)</th>
<th>(5\pi/6)</th>
<th>(\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 b) Haz la gráfica de la función \(F(x) \).

 c) ¿Cómo se relaciona esta gráfica con la obtenida en el inciso b)?

 d) Verifica que la derivada de \(y(t) = \frac{1}{2} - \frac{\text{sen}^2(2t)}{4} \) es \(\text{sen}^2(t) \). Realiza la gráfica de la función \(y(t) \) y escribe un párrafo breve sobre cómo se relaciona esta gráfica con las realizadas en los incisos b) y c).

Recuerda verificar tus respuestas en el Apéndice 1
Integración por sustitución

Toda vez que se ha planteado formalmente la relación inversa entre las operaciones de derivación e integración a través del Teorema Fundamental del Cálculo, resulta muy útil establecer en esta sección las técnicas de integración de funciones compuestas. El análisis se divide en dos partes: patrón de reconocimiento y cambio de variable. Ambas técnicas comprenden una sustitución a partir del uso de una variable u. Con el patrón de reconocimiento se hace la sustitución mentalmente; con el cambio de variables se escriben los pasos de la sustitución.

La importancia de la sustitución como técnica de integración es comparable con la regla de la cadena en la derivación, misma que se describió en la primera unidad de este libro. Se debe recordar que para funciones derivables dadas por $y=F(u)$ y $u=g(x)$, la regla de la cadena expresa que:

$$\frac{d}{dx}[F(g(x))] = F'(g(x))g'(x)$$

Ahora bien, de la definición de una antiderivada, se deduce que

$$\int F'(g(x))g'(x)\,dx = F(g(x)) + C = F(u) + C,$$ donde C es la constante de integración. Estos resultados se enuncian en el siguiente teorema.

Teorema 6 Antiderivación de una función compuesta

Sea g una función cuyo rango es un intervalo I, y sea f una función continua sobre I. Si la función g es derivable en su dominio y F es una antiderivada de f sobre I, entonces $\int f(g(x))\,g'(x)\,dx = F(g(x)) + C$.

Si la función $u = g(x)$, entonces $du = g'(x)\,dx$ y $\int f(u)\,du = F(u) + C$.

Nota: la proposición del teorema anterior no indica cómo distinguir entre $f(g(x))$ y $g'(x)$ en el integrando. Resulta muy importante señalar que conforme se adquiera más experiencia en la integración, la habilidad matemática para hacer la distinción se desarrollará. Por supuesto, una parte clave es la familiaridad con las derivadas.

Un consejo para ti: hay varias técnicas para aplicar la sustitución, cada una distinta de las demás. Sin embargo se debe recordar que el objetivo de cada técnica es el mismo: encontrar una antiderivada del integrando.

Investigación Recocimiento de patrones. El integrando de cada una de las siguientes integrales se ajusta al patrón $f(g(x))g'(x)$. Identifica el patrón y aplica el resultado para evaluar cada integral.

a) $\int 2x(x^2+1)^6\,dx$
b) $\int 3x^2\sqrt{x+7}\,dx$
c) $\int \sec^2(x)(\tan(x)+3)\,dx$

Las siguientes tres integrales son similares a las anteriores. El objetivo entonces es mostrar cómo se puede multiplicar y dividir entre una constante para evaluar este tipo de integrales.
d) \[\int x(x^2 + 1)^6 \, dx \]
eq \[\int x^2 \sqrt{x^3 + 1} \, dx \] \quad \text{f) } \int 2 \sec^2(x)(\tan(x)+3) \, dx.

Recuerda verificar tus respuestas en el Apéndice 1

A continuación los ejemplos 1 y 2 muestran cómo aplicar el teorema 6 directamente, reconociendo la presencia de \(f(g(x)) \) y \(g'(x) \). Observa que la función compuesta en el integrando tiene una \textit{función externa} \(f \) y una \textit{función interna} \(g \). Además, la derivada \(g'(x) \) está presente como factor en el integrando.

![Diagrama](#)

Ejemplo 1

Reconocimiento de patrón \(f(g(x))g'(x) \)

Encuentra \(\int 2x(x^2 + 1)^2 \, dx \).

Solución. Al definir \(g(x) = x^2 + 1 \), se obtiene \(g'(x) = 2x \), y de esta forma se reconoce 100.

Luego entonces se reconoce que el integrando sigue el patrón \(f(g(x))g'(x) \). Al usar la regla de la potencia para la integración (véase la tabla 1, de la sección 2.2) y el teorema 2.6, se tiene que:

\[
\int f(g(x))g'(x) \, dx = \int 2x(x^2 + 1)^2 \, dx = \frac{1}{3}(x^2 + 1)^3 + C.
\]

Ahora bien, al utilizar la regla de la cadena se podrá comprobar que la derivada de la antiderivada, \(\frac{1}{3}(x^2 + 1)^3 + C \), es precisamente el integrando de la integral original (por el Teorema Fundamental del Cálculo).

Ejemplo 2

Reconocimiento de patrón \(f(g(x))g'(x) \)

Encuentra \(\int 5 \cos(5x) \, dx \).

Solución. Al definir \(g(x) = 5x \), se obtiene \(g'(x) = 5 \), y de esta forma se reconoce \(f(g(x)) = 5 \cos(5x) \). Luego entonces se reconoce que el integrando sigue el patrón \(f(g(x))g'(x) \). Al usar la regla del coseno para la integración y el teorema anterior, se tiene que

\[
\int f(g(x))g'(x) \, dx = \int 5 \cos(5x) \, dx = \frac{\sin(5x)}{5} + C.
\]

Para desarrollar habilidad matemática se requiere comprobar que al derivar la antiderivada \(\frac{\sin(5x)}{5} + C \) se obtiene el integrando original.
Es importante señalar que los integrandos de los ejemplos 1 y 2 se ajustan exactamente al patrón \(f(g(x))g'(x) \), sólo hay que reconocerlo. Es posible extender considerablemente esta técnica considerando la regla de la constante múltiple.

\[
\int k \cdot f(x) \, dx = k \int f(x) \, dx
\]

Muchos integrandos incluyen la parte esencial (la parte variable) de \(g'(x) \), pero en ocasiones carecen de una constante múltiple. En tales casos es posible multiplicar y dividir entre la constante múltiple necesaria, como se muestra en el siguiente ejemplo.

Ejemplo 3

Multiplicación y división entre una constante

Determina \(\int x(x^2+1)^2 \, dx \)

Solución. La única diferencia de esta integral con la planteada en el ejemplo 1 es que el nuevo integrando no tiene un factor de 2. Sabemos que \(2x \) es la derivada de \(x^2 + 1 \), entonces podemos hacer \(g(x) = x + 1 \) y proporcionar \(2x \) como sigue:

\[
\int x(x^2+1)^2 \, dx = \int \frac{1}{2} (2x)(x^2 + 1)^2 \, dx .
\]

se multiplicó y dividió entre 2. Ahora sacamos la constante \(\frac{1}{2} \) de la integral:

\[
\frac{1}{2} \int (2x)(x^2+1)^2 \, dx = \frac{1}{2} \left[\frac{(x^2 + 1)^3}{3} \right] + C = \frac{1}{6}(x^2 + 1)^3 + C .
\]

Cambio de variable

Con un cambio de variable formal, se escribe de nuevo la integral en términos de la variable \(u \) y su derivada \(du \) (o cualquier otra variable conveniente). Aunque este procedimiento puede llevar más pasos escritos que el de reconocimiento de patrón ilustrado en los ejemplos 1, 2 y 3, la técnica de cambio de variable es muy útil cuando se trabaja con integrandos complicados en álgebra. La técnica de cambio de variable usa la notación de Leibniz para la derivada, es decir, si \(u = g(x) \), entonces \(du = g'(x) \, dx \), y la integral del teorema 6 toma la siguiente forma:

\[
\int f(g(x)) \, g'(x) \, dx = \int f(u) \, du = F(u) + C .
\]
Ejemplo 4

Cambio de variables en una integral indefinida

Encuentre \(\int \sqrt{2x-1} \, dx \)

Solución. Dada la integral, ¿cuál es el cambio de variable más conveniente?

Sea \(u = 2x - 1 \), entonces \(du = 2dx \), implicando que \(dx = \frac{du}{2} \).

Al sustituir en la integral, ¿qué expresión se obtiene?

\[
\int \sqrt{2x-1} \, dx = \int \sqrt{u} \left(\frac{du}{2} \right)
\]

A partir de la expresión encontrada ya sólo resta proceder a integrar.

\[
= \frac{1}{2} \int u^{\frac{3}{2}} \, du = \frac{1}{2} \left(\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right) + C = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{1}{3}(2x-1)^{\frac{3}{2}} + C.
\]

Ejemplo 5

Cambio de variable en una integral indefinida

Se retomará la integral anterior a fin de ilustrar que puede haber más de una técnica efectiva.

Encuentra \(\int (2x-1)^{\frac{3}{2}} \, dx \)

Solución. Como en el ejemplo anterior, sea \(u = 2x - 1 \), entonces \(du = 2dx \), implicando que \(dx = \frac{du}{2} \).

Como el integrando tiene un factor de \(x \), también se tiene que despejar \(x \) en términos de \(u \), como sigue: \(u = 2x - 1 \Rightarrow x = \frac{u+1}{2} \).

Al sustituir en la integral los términos anteriores, ¿qué expresión se obtiene?

\[
\int (2x-1)^{\frac{3}{2}} \, dx = \int \frac{(u+1)}{2} \sqrt{u} \left(\frac{du}{2} \right)
\]

Una vez más, ya obtenida la expresión en su forma más sencilla, se procede a integrar como es usual.

(Continúa...)
Cálculo en fenómenos naturales y procesos sociales

A continuación se resumen los pasos que se siguen para la integración por sustitución.

Ejemplo 6

Cambio de variable en una integral indefinida

Ahora se trabajará con expresiones trigonométricas. Encuentra \(\int \frac{1}{2} (2x) \cos(2x) \, dx \)

Solución. ¿Cuál es el cambio de variable más conveniente?

Sea \(u = \sin(2x) \), si \(du = 2 \cos(2x) \, dx \), entonces \(2 \cos(2x) \, dx = \frac{du}{2} \). Escribe la expresión que se origina al sustituir en la integral la expresión anterior.

\[
\int \sin^3(2x) \cos(2x) \, dx = \int u^3 \left(\frac{du}{2} \right)
\]

Una vez más, se procede a integrar de la manera usual.

\[
\frac{1}{2} \int u^3 \, du = \frac{1}{8}u^4 + C = \frac{1}{8}\sin^4(2x) + C
\]

¿Cómo comprobarías el resultado?

Podemos comprobarlo mediante la operación de derivación.

\[
\frac{d}{dx} \left(\frac{1}{8}\sin^4(2x) \right) = \left(\frac{1}{8} \right) (4) \sin^3(2x) \cos(2x) = \sin^3(2x) \cos(2x)
\]

Debido a que al derivar el resultado se produce el integrando original, sabemos que hemos obtenido la antiderivada correcta.

A continuación se resumen los pasos que se siguen para la integración por sustitución.

Directrices para hacer un cambio de variable

1. Elegir una sustitución \(u = g(x) \). Casi siempre es conveniente elegir la parte interna de una función compuesta; digamos una cantidad elevada a una potencia.
2. Calcular \(du = g'(x) \, dx \).
3. Escribir de nuevo la integral en términos de la variable \(u \) y \(du \).
4. Evaluar la integral en términos de \(u \).
5. Sustituir la variable \(u \) por \(g(x) \) para obtener una antiderivada en términos de \(x \).
6. Comprobar el resultado mediante la derivación.

Regla general de la potencia para la integración

Una de las sustituciones de \(u \) más comunes comprende cantidades (funciones) en el integrando elevadas a una cierta potencia. Debido a la importancia de este tipo de sustitución se le da el nombre especial de **Regla general de la potencia**. Una demostración de esta regla se deduce directamente de la regla de la potencia (simple) para la integración (véase la tabla 1) junto con el teorema.

Teorema 7 Regla general de la potencia para la integral.

Si \(g(x) \) es una función derivable, entonces

\[
\int [g(x)]^n \cdot g'(x) \, dx = \frac{[g(x)]^{n+1}}{n+1} + C
\]

Si definimos \(u = g(x) \), entonces:

\[
\int u^n \, du = \frac{u^{n+1}}{n+1} + C \quad n \neq -1
\]

Ejemplo 7

Sustitución y regla general de la potencia

| a) \(\int \frac{dx}{(x+1)^3} = \int \frac{du}{u^3} = \int u^{-2} \, du = \frac{u^{-1}}{-2+1} + C = -\frac{1}{x+1} + C \) |
| b) \(\int \left(1 + \frac{1}{x}\right)^3 \, dx = \int \left(1 + \frac{1}{x}\right)^3 \, du = \frac{u^{3+1}}{3+1} + C = \frac{1}{4}u^4 + C = \frac{1}{4} \left(1 + \frac{1}{x}\right)^4 + C \) |
| c) \(\int \frac{\sin(x)}{\cos^4(x)} \, dx = \int \frac{u^4}{u^4} \, du = -\int u^{-4} \, du = -\frac{u^{-3+1}}{-4+1} + C = -\frac{1}{3}u^{-3} + C = -\frac{1}{3 \cos^3(x)} + C = \frac{1}{3} \, \sec^3(x) + C \) |
| d) \(\int \frac{\cos(x)}{\sin^3(x)} \, dx = \int \frac{u^3}{u^3} \, du = -\int u^{-3+1} \, du = -\frac{1}{2}u^{-2} + C = -\frac{1}{2} \, \csc^2(x) + C = \frac{1}{2} \, \csc^2(x) + C \) |
Supongamos que se te pide evaluar una de las integrales siguientes.

1. ¿Cuál escogerías de cada inciso? Explica tu razonamiento.
 a) $\int \sqrt{x^4+2} \, dx$ o $\int x^3 \sqrt{x^5+2} \, dx$

b) $\int \tan(2x) \, dx$ o $\int \tan(2x) \sec^2(x) \, dx$

Recuerda verificar tus respuestas en el Apéndice 1

Cambio de variable para integrales definidas

Cuando se utiliza la sustitución u con una integral definida, a menudo es conveniente determinar los límites de integración para la variable u en lugar de convertir la antiderivada otra vez a la variable x y evaluar la función en los límites originales. Este cambio de variable se expresa explícitamente en el siguiente teorema. La demostración se deduce del teorema 6 junto con el Teorema Fundamental del Cálculo (teorema 5).

Teorema 8 Cambio de variable para integrales definidas

Si la función $u = g(x)$ tiene una derivada continua sobre el intervalo cerrado $[a, b]$ y la función f es continua en el rango de la función g, entonces

$$\int_a^b f(g(x)) g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$

A continuación se presentan tres ejemplos donde se realiza el cambio de variable en integrales definidas.

Ejemplo 8

Cambio de variable en integral definida

Evalúa $\int_0^x (x^2+2)^3 \, dx$

Solución. Sea $u = x^2 + 2$, entonces $du = 2x \, dx$, implicando que $x \, dx = \frac{du}{2}$.

Antes de sustituir, determinaremos los nuevos límites de integración.

Límite inferior: Cuando $x = 0$, se tiene que $u = (0)^2 + 2 = 2$.
Ejemplo 9

Cambio de variable en una integral definida

Evalúal $\int_{1}^{2} \frac{dx}{2x}$

Solución. Sea $u = 2x$, entonces $du = 2\,dx$, impidiendo que $dx = \frac{du}{2}$.

Antes de sustituir, determinaremos los nuevos límites de integración.

Límite inferior: Cuando $x = 1$, se tiene que $u = 2(1) = 2$.

Límite superior: Cuando $x = 2$, tenemos que $u = 2(2) = 4$.

Ahora es posible sustituir para obtener:

$$\int_{1}^{2} \frac{dx}{2x} = \frac{1}{2} \int_{2}^{4} \frac{du}{u} = \frac{1}{2} \left[\ln(u) \right]_{2}^{4} = \frac{1}{2} (\ln(4) - \ln(2)) = \frac{1}{2} (1.386 - 0.693) = 0.346$$

Ejemplo 10

Cambio de variable en una integral definida

Evalúal $\int_{1}^{5} \frac{x}{\sqrt{2x-1}} \,dx$

Solución. Sea $u = \sqrt{2x-1}$, entonces al elevar al cuadrado y despejar x tenemos:

$$u^2 = 2x - 1 \Rightarrow u^2 + 1 = 2x \Rightarrow \frac{u^2 + 1}{2} = x$$

Obteniendo ambos miembros: $\Rightarrow u \, du = dx$

Antes de sustituir, determinaremos los nuevos límites de integración.

Límite inferior: Cuando $x = 1$, se tiene que $u = \sqrt{2(1)-1} = 1$.

Límite superior: Cuando $x = 5$, tenemos que $u = \sqrt{2(5)-1} = 3$.

Ahora es posible sustituir para obtener:

$$\int_{1}^{5} \frac{x}{\sqrt{2x-1}} \,dx = \int_{1}^{3} \frac{1}{u} \left(\frac{u^2 + 1}{2} \right) u \,du = \frac{1}{2} \int_{1}^{3} (u^2 + 1) \,du = \frac{1}{2} \left[\frac{u^3}{3} + u \right]_{1}^{3} = \frac{1}{2} \left(9 + 3 - \frac{1}{3} + 1 \right) = \frac{16}{3}$$

Geométricamente, podemos interpretar la ecuación: $\int_{1}^{5} \frac{x}{\sqrt{2x-1}} \,dx = \int_{1}^{3} \left(\frac{u^2 + 1}{2} \right) du$ para indicar que las dos regiones diferentes que se muestran en las figuras 21 y 22 tienen la misma área (valor de $\frac{16}{3}$).
Cuando se evalúan integrales definidas por medio de la técnica de sustitución es posible que el límite superior de integración de la forma variable \(u \) sea más pequeño que el límite inferior. Si este es el caso no se deben cambiar los límites; en su lugar sólo debe hacerse la evaluación como siempre. Por ejemplo, después de sustituir \(u = \sqrt{1-x} \) en la integral \(\int_0^1 x^2 \sqrt{1-x} \, dx \) se obtiene lo siguiente:

Límite inferior: cuando \(x = 0 \) se tiene que \(u = \sqrt{1-(0)} = 1 \).

Límite superior: cuando \(x = 1 \), tenemos que \(u = \sqrt{1-(1)} = 0 \).

Por lo tanto, la forma correcta de la sustitución al usar la variable \(u \) en esta integral definida es

\[-2 \int_1^0 (1-u^2)^2 \, u \, du \]

Aún con el cambio de variable la integración puede ser difícil de llevar a cabo. En ocasiones es posible simplificar la evaluación de una integral definida (sobre un intervalo que es simétrico al eje y o al origen) si se reconoce que el integrando es una función par o impar (véase la figura 23).

Teorema 9 Integración de funciones pares e impares

Sea \(f \) una función integrable en el intervalo cerrado \([-a, a]\).

1. Si \(f \) es una función par, entonces \(\int_{-a}^a f(x) \, dx = 2 \int_0^a f(x) \, dx \)
2. Si \(f \) es una función impar, entonces \(\int_{-a}^a f(x) \, dx = 0 \)
Demostración. Para la primera parte, como f es una función par sabemos que $f(x) = f(-x)$. Entonces, al aplicar el teorema 6 con la sustitución $u = -x$ se tiene que

$$
\int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-u)(-du) - \int_{-a}^{0} f(u) \, du = \int_{0}^{a} f(u) \, du
$$

Finalmente, por propiedad aditiva de la integral en un intervalo se obtiene:

$$
\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 2\int_{0}^{a} f(x) \, dx
$$

Esto demuestra la primera propiedad que se enuncia en el teorema. Haz la demostración de la segunda propiedad como ejercicio.

Ejemplo 11

Integración de una función impar

Evalúa $\int_{-\pi/2}^{\pi/2} \left[\sin^3(x) \cos(x) + \sin(x) \cos(x) \right] \, dx$

Solución. Sea $f(x) = \sin^3(x) \cos(x) + \sin(x) \cos(x)$, entonces:

$$
f(-x) = \sin^3(-x) \cos(-x) + \sin(-x) \cos(-x) = -\sin^3(x) \cos(x) - \sin(x) \cos(x) = -f(x)
$$

 Esto implica que la función f es impar, y como el intervalo $\left[-\pi/2, \pi/2 \right]$ es de la forma $[-a, a]$ (simétrica al origen), es posible aplicar el teorema 9 para concluir que

(Continúa...)
La integración produce un efecto de cancelación (lo cual se tratará con mayor profundidad al final de la sección Área comprendida entre dos curvas).

Figura 24 Debido a que $f(x)$ es una función impar, $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx = 0$.

Valor promedio y área comprendida entre dos curvas

Para poder dar paso al estudio y tratamiento de una serie de aplicaciones del cálculo, necesitamos enunciar dos resultados más y una definición que contribuirá en el planteamiento y solución de problemas. Se omite la demostración del siguiente teorema por rebasar los propósitos de la presente obra; la demostración puede consultarse en Purcell (2007).

En esta unidad se analizó que el área de una región bajo una curva es mayor que la de un rectángulo inscrito y menor que la de un rectángulo circunscrito. El resultado que a continuación se presenta con el nombre de Teorema del valor medio para integrales, indica que en algún lugar “entre” el rectángulo inscrito y el circunscrito existe un rectángulo cuya área es precisamente igual a la de la región bajo la curva, como se muestra en la figura 25.
Teorema 10 Teorema del valor medio para integrales

Si f es una función continua en el intervalo cerrado $[a, b]$, entonces existe un número c en el intervalo $[a, b]$ tal que $\int_{a}^{b} f(x) \, dx = f(c)(b-a)$

El teorema del valor medio proporciona el denominado valor promedio de la función f sobre el intervalo $[a, b]$. En la figura 26 se debe observar que el área de la región bajo la gráfica de f es igual al área del rectángulo cuya altura es precisamente el valor promedio, $f(x)$.

Definición de valor promedio de una función sobre un intervalo

Si la función f es integrable sobre un intervalo cerrado $[a, b]$, entonces el valor promedio de f sobre dicho intervalo es $\frac{1}{b-a} \int_{a}^{b} f(x) \, dx$

El primero de los problemas de aplicación a estudiar en la siguiente sección representa un claro ejemplo de la utilidad del concepto del valor promedio de una función.

Ahora bien, para poder resolver diversos problemas de la vida cotidiana con el uso del cálculo matemático se debe considerar ampliar la aplicación de las integrales definidas desde el área de una región bajo una curva hasta el área de una región comprendida por dos curvas. Para ello consideremos dos funciones f y g continuas sobre el intervalo cerrado $[a, b]$. Si la gráfica de la función g yace debajo la función f, es posible interpretar de manera geométrica el área de la región comprendida entre dichas gráficas como el área de la región bajo la gráfica de g restada del área de la región bajo la gráfica de f, como se muestra en la figura 27.

Área de una región comprendida por dos curvas

Si f y g son funciones continuas sobre el intervalo cerrado $[a, b]$ y $g(x) \leq f(x)$ para todos los valores de x en $[a, b]$, entonces el área de la región comp-

(Continúa...)
Para aplicar de forma adecuada el concepto matemático planteado a partir del área de una región comprendida por la gráfica de dos funciones, realiza los siguientes ejercicios.

¿Cierto o falso? En los ejercicios 1 a 3 averigua si el enunciado es verdadero o falso. Si es falso explica por qué o propón un ejemplo que demuestre su falsedad (contraejemplo).

1. Si el área de la región limitada por las gráficas de f y g es 1, entonces el área de la región limitada por las gráficas de $h(x)=f(x)+C$ y $k(x)=g(x)+C$ también es 1.

2. Si $\int_{a}^{b}[f(x)-g(x)]\,dx = A$, entonces $\int_{a}^{b}[g(x)-f(x)]\,dx = -A$.

3. Si las gráficas de f y g se cruzan a medio camino entre $x = a$ y $x = b$, entonces $\int_{a}^{b}[f(x)-g(x)]\,dx = 0$.

Los ejercicios 4 a 8 representan la aplicación del concepto de área de una región comprendida entre dos curvas.

4. Supongamos que para calcular el área de la región comprendida entre dos curvas se utilizan rectángulos representativos horizontales. Indica cuál es la variable de integración.

(Continuación...)
5. Describe con tus propias palabras cómo avanzar desde una fórmula previa al cálculo hasta una nueva fórmula de integración, cuando se utiliza la integración para resolver problemas prácticos.

6. Las gráficas de \(y = x^2 - 2x^2 + 1 \) y \(y = 1 - x^2 \) se cruzan en tres puntos. Sin embargo, el área comprendida entre dichas curvas puede calcuirse con una sola integral. Explica por qué es así y escribe una integral que corresponda a dicha área.

7. Una persona con título universitario tiene dos ofertas de trabajo. El salario (en dólares) inicial en ambas es de 32,000, y al cabo de 8 años de servicio, en cualquiera de ellas le pagarán 54,000. El aumento de salario en cada oferta de trabajo se muestra en el gráfico 5. ¿Cuál es la mejor oferta de trabajo desde el punto de vista estrictamente monetario? Explica tu respuesta.

8. La legislatura de un estado está debatiendo dos propuestas para eliminar el déficit del presupuesto anual en el año 2013. La proporción de disminución del déficit en cada propuesta se muestra en el gráfico 6. Desde el punto de vista de minimizar el déficit acumulativo del estado, ¿cuál es la mejor propuesta? Explica tu respuesta.

Recuerda verificar tus respuestas en el Apéndice 1
A continuación se plantean y resuelven problemas inmersos en nuestra vida cotidiana haciendo uso del cálculo integral.

Aplicaciones de la integración

En los problemas de aplicación al cálculo que se estudian en esta sección se usan leyes de física muy conocidas e importantes. Los descubrimientos de muchas de estas leyes tuvieron lugar durante el mismo periodo en el que se desarrollaba el cálculo. De hecho, durante los siglos XVII y XVIII hubo muy poca diferencia entre los físicos y los matemáticos.

Un gran físico-matemático de los siglos XVII y XVIII fue Emilie de Breteuil (1706-1749), quien sintetizó el trabajo de muchos otros científicos, entre ellos Newton, Leibniz, Huygens, Kepler y Descartes. Su texto de física llamado *Institutions* fue muy utilizado durante muchos años. Otro trabajo importante de Breteuil fue la traducción del texto de Newton *Philosophiae Naturalis Principia Mathematica* al francés, su traducción y los acertados comentarios con que enriqueció tan importante obra contribuyeron enormemente a la aceptación de la ciencia newtoniana en Europa.

La primera persona que voló a una velocidad superior a la del sonido fue Charles Yeager. El 14 de octubre de 1947 en un avión de propulsión a chorro X-1 a una altitud de 12.8 kilómetros se cronometró su velocidad en 299.5 metros por segundo. Si Yeager hubiera volado a una altitud por debajo de los 10,375 metros (10.3 km), su velocidad de 299.5 metros por segundo no habría “rotado la barrera del sonido”. La figura 30 muestra al General Yeager con su aeronave X-1.

Para saber más

Para saber más

Ejemplo 1

Velocidad del sonido

A diferentes altitudes en la atmósfera terrestre el sonido viaja a distintas velocidades. La velocidad del sonido \(s(x) \) en metros por segundo puede modelarse matemáticamente por

\[
 s(x) = \begin{cases}
 -4x + 341, & 0 \leq x \leq 11.5 \\
 295, & 11.5 \leq x \leq 22 \\
 3/4 x + 278.5, & 22 \leq x \leq 32 \\
 3/2 x + 254.5, & 32 \leq x \leq 50 \\
 -3/2 x + 404.5, & 50 \leq x
\end{cases}
\]

donde \(x \) es la altitud en kilómetros (véase la figura 29).

Figura 28 Retrato de Emilie de Breteuil (1706-1749).

Figura 30 Primera persona en romper la barrera del sonido, Charles Yeager.

Figura 29 La velocidad del sonido depende de la altitud.
Cálculo en fenómenos naturales y procesos sociales

Tecnología. El siguiente problema trata sobre la ley de enfriamiento de Newton, que expresa que la razón de cambio en la temperatura de un objeto es proporcional a la diferencia entre la temperatura del objeto y la del medio circundante. En la parte final de la Actividad 7 de esta unidad se puede ver cómo es posible utilizar la información recolectada usando una graficadora para deducir experimentalmente un modelo de la ley del enfriamiento de Newton.

Ejemplo 2

Ley del enfriamiento de Newton

Sea y la temperatura en grados centígrados (ºC) de un objeto en una habitación cuya temperatura se mantiene constante a 18ºC. Si el objeto se enfria de 38º a 28º en 10 minutos, ¿cuánto tiempo más le tomará al objeto para disminuir su temperatura a 20ºC?

Solución. De la ley del enfriamiento de Newton sabemos que la razón de cambio en y es proporcional a la diferencia entre y y 18. Esto se puede escribir como

\[
\frac{dy}{dt} = k(y - 18) \quad \text{Ecución diferencial}
\]

\[
\left(\frac{1}{y - 18}\right)dy = k \, dt \quad \text{Separando variables}
\]

(Continúa...)

Frente a esta situación, el problema es determinar la velocidad promedio del sonido sobre el intervalo [0, 80].

Solución. Comenzaremos por integrar \(s(x)\) sobre el intervalo \([0, 80]\). Para ello, procedemos a descomponer la integral en cinco partes

\[
\int_{0}^{11.5} s(x) \, dx = \int_{11.5}^{22} s(x) \, dx = \int_{22}^{32} s(x) \, dx = \int_{32}^{40} s(x) \, dx = \int_{40}^{80} s(x) \, dx
\]

\[
= \left[-2x^2 + 341x\right]_{0}^{11.5} = 3657
\]

\[
= \left[295x\right]_{11.5}^{22} = 3097.5
\]

\[
= \left[-\frac{3}{4}x^2 + 278.5x\right]_{22}^{32} = 2987.5
\]

\[
= \left[-\frac{3}{4}x^2 + 254.5x\right]_{32}^{40} = 5688
\]

\[
= \left[-\frac{3}{4}x^2 + 404.5x\right]_{40}^{80} = 9210
\]

Si sumamos los cinco valores de las integrales, obtenemos:

\[
\int_{0}^{80} s(x) \, dx = 24640
\]

Por lo tanto, la velocidad promedio del sonido desde una altitud de 0 hasta 80 kilómetros es:

\[
\frac{1}{80} \int_{0}^{80} s(x) \, dx = \frac{24640}{80} = 308 \text{ m/s}
\]

Más información en...

Visita el siguiente enlace electrónico: http://www.achievement.org/autodoc/page/yea0bio-1
El planteamiento de los siguientes problemas requiere de las tres leyes de la física desarrolladas por Robert Hooke (1635-1703), Issac Newton (1642-1727) y Charles Coulomb (1736-1806), respectivamente.

Figura 31 Gráfica del modelo matemático de enfriamiento: $y(t) = 18 + 20e^{-0.06931t}$.

(Continuación...)

Integrando de ambos lados

$\int \frac{1}{y-18} dy = \int k dt$

Encontrando la antiderivada

$\ln|y-18| = kt + C,$

Puesto que $y > 18$, entonces $|y-18| = y-18$, y se pueden omitir los signos de valor absoluto. Usando la notación exponencial, tenemos: $y-18 = e^{kt+C} \Rightarrow y=18+Ce^{kt}$ con $C = e^C$.

Para encontrar la constante C, usamos el hecho de que $y > 18$ cuando $t = 0$, y al sustituir en la anterior ecuación: $38 = 18 + Ce^{0}$

Lo que implica que $C = 20$. Ahora usamos el hecho de que $y = 28$ cuando $t = 10$, y al sustituir de nueva cuenta en la anterior ecuación, obtenemos: $28 = 18 + 20e^{10k}$

$10 = 20e^{10k} \Rightarrow k = \frac{1}{10} \ln\left(\frac{1}{2}\right) = -0.06931$.

Y de esta forma el modelo matemático del enfriamiento es $y = 18 + 20e^{-0.06931t}$.

Finalmente, deseamos conocer el tiempo t cuando $y = 20$, sustituyendo en nuestro modelo tenemos:

$20 = 18 + 20e^{-0.06931t} \Rightarrow 2 = 20e^{-0.06931t} \Rightarrow \frac{1}{10} = e^{-0.06931t}$

Aplicando logaritmo natural de ambos lados de la ecuación, obtenemos:

$\ln\left(\frac{1}{10}\right) = -0.06931t \Rightarrow t = 33.22$ minutos.

Por lo tanto, se requiere más de 23.22 minutos para que el objeto se enfrié a una temperatura de 20° (ver figura 31).
Para saber más

Ley de Hooke: La fuerza F que se requiere para comprimir o alargar un resorte (dentro de sus límites elásticos) es proporcional a la distancia d que el resorte se comprime o se alarga desde su longitud original. Es decir, $F = kd$.

Donde la constante de proporcionalidad k (constante del resorte) depende de la naturaleza específica del resorte.

Ley de gravitación universal: La fuerza F de atracción entre dos partículas de masas m_1 y m_2 es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia d entre las dos partículas. Es decir, $F = \frac{G m_1 m_2}{d^2}$.

Ley de Coulomb: La fuerza entre dos cargas q_1 y q_2 en el vacío es proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia d entre ambas cargas; es decir, $F = \frac{k q_1 q_2}{d^2}$.

Si q_1 y q_2 están dadas en unidades electrostáticas y d en centímetros, la fuerza F estará en dinas para un valor de $k = 1$.

Ejemplo 3

Compresión de un resorte

Una fuerza de 336 kilogramos comprime un resorte 8 centímetros a partir de su longitud original de 32 cm. Encuentra el trabajo realizado al comprimir el resorte 8 centímetros adicionales.

Solución. Por la ley de Hooke, la fuerza $F(x)$ que se necesita para comprimir el resorte x unidades (desde su longitud natural) es $F(x) = kx$. Con la información proporcionada se deduce que $F(8) = 336 = k(8)$, implicando que $k = 42$ y $F(x) = 42x$, como se muestra en la figura 32.

Para determinar el incremento en el trabajo, supongamos que la fuerza necesaria para comprimir el resorte en un incremento pequeño Δx es casi constante. Entonces, el incremento de trabajo es

$$\Delta W = (\text{fuerza})(\text{incremento en la distancia}) = 42x \Delta x.$$

Como el resorte se comprime de $x = 8$ a $x = 16$ centímetros menos que su longitud original, el trabajo que se requiere es:

$$W = \int_8^{16} F(x) \, dx = \int_8^{16} 42x \, dx = 21x^2 \bigg|_8^{16} = 21(256 - 64) = 4032 \text{ kg/cm}$$

Figura 32 La ilustración muestra tres momentos del estado del resorte. En la parte superior, longitud natural del resorte ($F = 0$). En la parte central, comprimido 8 centímetros ($F = 336$). Y en la parte inferior, el resorte se comprime x centímetros ($F = 42x$).
Se debe observar que no se integró desde \(x = 0 \) hasta \(x = 16 \) porque se trataba de determinar el trabajo hecho al comprimir el resorte 8 centímetros adicionales (sin incluir los ocho primero centímetros).

Ejemplo 4

Puesta en órbita de un módulo espacial –primera de dos partes.

Un módulo espacial pesa 15 toneladas en la superficie de la Tierra. ¿Cuánto trabajo se realiza al propulsar el módulo a una altura de 1,280 kilómetros arriba de la superficie terrestre, como se ilustra en la figura 33? Considera que el radio terrestre es de 6,400 kilómetros y no se toma en cuenta la resistencia del aire o el peso del propulsor.

Solución. En virtud de que el peso de un cuerpo varía inversamente proporcional con el cuadrado de su distancia desde el centro de la Tierra, la fuerza \(F(x) \) ejercida por la gravedad es:

\[
F(x) = \frac{C}{x^2},
\]

donde \(C \) es la constante de proporcionalidad.

Como el módulo espacial pesa 15 toneladas en la superficie terrestre y el radio de ésta es, aproximadamente 6,400 kilómetros, se tiene:

\[
15 = \frac{C}{(6400)^2} \Rightarrow C = 614'400,000,
\]

implicando que el incremento del trabajo realizado sea:

\[
\Delta W = (fuerza)(incremento en la distancia) = \frac{614'400,000}{x^2} \Delta x.
\]

Ahora bien, como el módulo espacial se propulsa desde 6,400 hasta los 7,680 kilómetros, el trabajo realizado es

\[
W = \int_6^{7680} f(x) \, dx = \int_6^{7680} \frac{614'400,000}{x^2} \, dx = \left. -\frac{614'400,000}{x} \right|_6^{7680} = -80,000 + 96,000 = 16,000 \text{ toneladas kilómetro} = 16,000'000,000 \text{ kilogramo metro (Kgm)}.
\]

En el sistema internacional de unidades, usando un factor de conversión de 1 Joules = 0.1019 Kgm, el trabajo realizado para propulsar un módulo espacial a 1,280 kilómetros sobre la superficie terrestre es: \(W \approx 1.57 \times 10^{11} \) Joules.

Ejemplo 5

Puesta en órbita de un módulo espacial –segunda parte.

En el ejemplo anterior un módulo espacial de 15 toneladas de peso requiere de 16,000 toneladas-kilómetros de trabajo para impulsarlo a una altura de 1,280 kilómetros sobre la superficie de la Tierra. ¿Cuánto trabajo se requiere al propulsar el mismo módulo a una distancia ilimitada de la superficie terrestre, como se ilustra en la figura 34? De nuevo, considera que el radio terrestre es de 6,400 kilómetros y no tomes en cuenta la resistencia del aire o el peso del propulsor.
Observación: la diferencia del trabajo realizado al propulsar el módulo espacial de los dos ejemplos anteriores es de 80,000 toneladas-kilómetro, aproximadamente 7.85×10^{11} Joules. El factor de conversión utilizado es: 1 Joules = 0.1019 Kgm.

Nota: La definición de integral definida $\int_{a}^{b} f(x) \, dx$ necesita que el intervalo cerrado $[a, b]$ sea finito (como se vio con anterioridad). Además el teorema fundamental del cálculo (ver Teorema 5), por medio del cual se han evaluado las integrales definidas, requiere que la función f sea continua en $[a, b]$. En el ejemplo anterior se planteó un procedimiento para evaluar integrales que no cumplen con estos requisitos, y pueden tratarse casos donde uno o ambos límites de integración son infinitos, o donde la función f tiene un número finito de discontinuidades infinitas en el intervalo $[a, b]$. Las integrales que poseen cualquiera de estas propiedades se denominan integrales impropias. Se dice que una función f tiene una discontinuidad infinita en c si, por la izquierda o por la derecha (límites laterales son iguales a infinito), $\lim_{x \to c^-} f(x) = \infty$ o $\lim_{x \to c^+} f(x) = -\infty$.

Solución. Al principio podría pensarse que se necesita una cantidad ilimitada de trabajo, pero si este fuera el caso sería imposible enviar cohetes al espacio exterior. Como este tipo de situación-problema ya se ha realizado anteriormente, el trabajo realizado debe ser finito; y para determinar su valor se puede hacer de la siguiente manera. Usando la integral del ejemplo anterior, se sustituye el límite superior de 7,680 kilómetros por ∞, y se tiene que

$$W = \int_{a}^{\infty} f(x) \, dx = \int_{6400}^{\infty} \frac{614'400,000}{(x)^{2}} \, dx = \lim_{b \to \infty} \left[-\frac{614'400,000}{b} + \frac{614'400,000}{6400} \right] = 96,000 \text{ tonelada kilómetro}$$

$$W = 96,000'000,000 = 9.6 \times 10^{10} \text{ kilogramo metro (Kgm)} \quad W = 9.421 \times 10^{11} \text{ Joules}$$

Figura 34 El trabajo realizado al propulsar un módulo espacial de 15 toneladas a una altura ilimitada sobre la superficie terrestre es 9.6×10^{10} Kgm, aproximadamente 9.421×10^{11} Joules.
Para tener otro ejemplo puntual (ver ejemplo 5 de esta sección) de cómo evaluar integrales impropias, considera la siguiente integral:
\[\int_1^b \frac{1}{x^2} \, dx = -\frac{1}{x} \bigg|_1^b \]
\[= -\frac{1}{b} + 1 = 1 - \frac{1}{b}, \] que puede interpretarse como el área de la región descrita en la figura 35. Al obtener el límite cuando \(b \to \infty \), se produce:
\[\lim_{b \to \infty} \left(\int_1^b \frac{1}{x^2} \, dx \right) = \lim_{b \to \infty} \left(1 - \frac{1}{b} \right) = 1. \]

Esta integral impropia puede interpretarse como el área de la región no acotada entre las gráficas de \(f(x) = \frac{1}{x^2} \) y el eje \(x \) (a la derecha de \(x = 1 \)).

Definición de integrales impropias con límites de integración infinitos

1. Si \(f \) es una función continua sobre el intervalo cerrado \([a, \infty)\), entonces
 \[\int_a^\infty f(x) \, dx = \lim_{b \to \infty} \left(\int_a^b f(x) \, dx \right) \]

2. Si \(f \) es una función continua sobre el intervalo cerrado \((-\infty, b]\), entonces
 \[\int_{-\infty}^b f(x) \, dx = \lim_{a \to -\infty} \left(\int_a^b f(x) \, dx \right) \]

3. Si \(f \) es una función continua sobre el intervalo cerrado \((-\infty, \infty)\), entonces
 \[\int_{-\infty}^\infty f(x) \, dx = \int_{-\infty}^c f(x) \, dx + \int_c^\infty f(x) \, dx, \]
 donde \(c \) es cualquier número real.

En los dos primeros casos, la integral impropia converge si el límite existe; de lo contrario, la integral impropia diverge. En el tercer caso, la integral impropia a la izquierda de la igualdad diverge si cualquiera de las integrales impropias a la derecha diverge y converge si los dos límites existen.
El segundo tipo básico de integrales impropias es el que tiene una discontinuidad en o entre los límites de integración.

Definición de integrales impropias con discontinuidades infinitas

1. Si f es una función continua sobre el intervalo $[a, b]$ y tiene una discontinuidad en b, entonces
 \[
 \int_a^b f(x) \, dx = \lim_{c \to b^-} \left(\int_a^c f(x) \, dx \right).
 \]

2. Si f es una función continua sobre el intervalo $(a, b]$ y tiene una discontinuidad en a, entonces
 \[
 \int_a^b f(x) \, dx = \lim_{c \to a^+} \left(\int_c^b f(x) \, dx \right).
 \]

3. Si f es una función continua sobre el intervalo cerrado $[a, b]$, excepto para algún valor de c en (a, b) en el que f tiene una discontinuidad infinita, entonces
 \[
 \int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.
 \]

En los dos primeros casos, la integral impropia converge si el límite existe; de lo contrario, la integral impropia diverge. En el tercer caso, la integral impropia a la izquierda de la igualdad diverge si cualquiera de las integrales impropias a la derecha diverge y converge si las dos integrales impropias convergen.

Realiza los siguientes ejercicios que ilustran la utilidad del cálculo en el estudio y tratamiento de fenómenos naturales y procesos sociales.

En los problemas 1 a 5 debes aplicar el concepto de valor promedio de una función sobre un intervalo y las habilidades matemáticas descritas en el ejemplo 1 de esta sección.

1. **Fuerza.** La fuerza F (en newtons) de un cilindro hidráulico en una prensa es proporcional al cuadrado de la secante de $x (\sec (x))$, donde x es la distancia (en metros) en que el cilindro se expande en su ciclo. El dominio de la función F es $\left[0, \frac{\pi}{3}\right]$, y $F(0) = 500$.
 a) Encuentra F en función de x.
 b) Encuentra el valor promedio de la presión sobre el intervalo $\left[0, \frac{\pi}{3}\right]$.

2. **Flujo sanguíneo.** La velocidad v del flujo de sangre en la distancia r respecto al eje central de una arteria de radio R es $v = k \left(R^2 - r^2 \right)$, donde k es la constante de proporcionalidad. Encuentra la velocidad promedio del flujo de sangre a lo largo de un radio de la arteria.
 Sugerencia: emplea 0 y R como límites de integración.
3. **Ciclo respiratorio.** El volumen V en litros de aire en los pulmones durante un ciclo respiratorio de 5 segundos se aproxima mediante el siguiente modelo matemático:

$$V = 0.1729t + 0.1522t^2 - 0.0374t^3,$$

donde t es el tiempo en segundos. Determina el volumen promedio de aire en los pulmones durante un ciclo de respiración.

4. **Promedio de utilidades.** Cierta compañía introduce un nuevo producto y aproxima las utilidades P en miles de pesos durante los 6 primeros meses mediante el modelo

$$P = 5\left(\sqrt{t} + 30\right) \quad t = 1, 2, 3, 4, 5, 6$$

a) Utiliza el modelo para completar la siguiente tabla y utiliza los resultados para calcular de forma aritmética la utilidad promedio en los seis primeros meses.

<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Encuentra el valor promedio de la función de utilidad por integración y compara los resultados obtenidos con respecto al inciso a). (Sugerencia: integrar sobre el intervalo $[0, 6]$).

c) ¿Cuál ventaja, si la hay, habrá al emplear la aproximación del promedio dada por la integral definida? (Observa que la aproximación por medio de la integral utiliza todos los valores reales de t en el intervalo y no solamente valores enteros).

5. **Ventas.** Las ventas de un producto en el mercado están dadas por el siguiente modelo:

$$U = 74.50 + 43.75 \cdot \sin\left(\frac{\pi}{6} t\right)$$

donde U se mide en miles de unidades por la venta del producto y t es el tiempo en meses, y $t = 1$ corresponde a enero (primer mes). Encuentra el promedio de ventas para los siguientes períodos.

a) El primer trimestre ($0 \leq t \leq 3$).

b) El segundo trimestre ($3 \leq t \leq 6$).

c) El segundo semestre ($6 \leq t \leq 12$).

d) Todo el año.

Con base en la ley de enfriamiento descrita por Newton y lo expuesto en el ejemplo 2 de esta sección, resuelve el siguiente problema.

6. **Ley de Newton sobre el enfriamiento.** Cuando cierto objeto se extrae de un horno y es colocado en un ambiente con temperatura constante de 26° centígrados su temperatura interna es de 815° C. Si después de una hora de haber sido extraído del horno, la temperatura interna del objeto es de 604° C, calcula la temperatura interna del objeto después de 5 horas de haber sido extraído de dicho horno.
A partir de la ley de Hooke y el trabajo expuesto en el ejemplo 3 de esta sección, resuelve los problemas 7 a 10.

7. Si una fuerza de 5 libras comprime 4 pulgadas en total un resorte de 15 pulgadas, ¿cuánto trabajo se realiza al comprimir ese resorte 7 pulgadas?

8. Una fuerza de 250 newtons alarga un resorte en 30 cm, ¿cuánto trabajo se realiza al alargar el resorte de 20 cm a 50 cm?

9. Una fuerza de 20 libras alarga un resorte 9 pulgadas en cierta máquina para hacer ejercicio físico. Calcula el trabajo realizado para alargar el resorte 1 pie a partir de su posición natural. (Recuerda que 1 pie equivale a 12 pulgadas).

10. Una puerta de garage que abre hacia arriba tiene dos resortes, uno a cada lado de la puerta. Se requiere una fuerza de 15 libras para alargar 1 pie cada resorte. Debido al sistema de poleas los resortes sólo se alargan la mitad de la distancia que recorre la puerta. Calcula el trabajo realizado por el par de resortes, si la puerta se mueve 8 pies en total y los resortes reposan.

A partir del trabajo expuesto sobre propulsión en los ejemplos 4 y 5 de esta sección, resuelve los problemas 11 a 13.

11. Sin considerar la resistencia del aire ni el peso del propulsor, calcula el trabajo realizado al propulsar un satélite de 5 toneladas hasta una altura sobre la superficie de la Tierra de:
 a) 161 kilómetros
 b) 483 kilómetros

12. Utiliza la información del ejercicio 11 para escribir el trabajo W del sistema de propulsión como una función de la altura h del satélite sobre la Tierra. Calcula el límite (si es que existe) de W cuando h se aproxima a infinito.

13. Un módulo lunar pesa 12 toneladas en la superficie de la Luna, ¿cuánto trabajo se realiza al propulsar dicho módulo desde la superficie de la Luna hasta una altura de 50 millas? Considera que el radio de la Luna es de 1100 millas y que su fuerza de gravedad equivale a un sexto de terrestre.

Recuerda verificar tus respuestas en el Apéndice 1.

Cálculo integral en fenómenos naturales y procesos sociales

¿Por qué se describe con frecuencia a la geometría como “fría” y “seca”? Una razón consiste en su incapacidad para describir la forma de una nube, una montaña, una costa, un árbol. Las nubes no son esferas, las montañas no son conos, las costas no son círculos, la corteza no es suave,
ni la iluminación ocurre en línea recta... la naturaleza muestra no sólo un alto grado sino un nivel de complejidad completamente diferente.

Benoit Mandelbrot (1924-2010)

Esta unidad culmina con el tratamiento de otro problema que permita el estudio de un fenómeno natural y proceso social a partir de uso adecuado de herramientas matemáticas descritas en las secciones anteriores.

Problema. Construcción de una presa de arco.

Las presas se construyeron originalmente para asegurar el suministro de agua durante la temporada de secas. Con el avance del conocimiento técnico han comenzado a servir para otras funciones. Hoy en día se construyen para crear lagos recreativos, alimentar generadores de potencia y prevenir inundaciones. La construcción de una presa nueva crea ciertas preocupaciones. Junto con sus beneficios puede alterar la ecología del área circundante y forzar a los habitantes del lugar, así como a la fauna, a cambiar su lugar de residencia. Una presa mal construida pone en peligro a toda la región adyacente y crea la posibilidad de un enorme desastre.

En la construcción de presas se usan varios diseños; uno de ellos es la presa de arco. Este diseño presenta una curva hacia el agua que contiene y casi siempre se construye en cañones angostos. La fuerza del agua presiona los bordes de la presa contra las paredes del cañón, de manera que la formación natural rocosa ayuda a soportar la estructura. Este soporte adicional significa que una presa de arco puede construirse con menos materiales que una presa soportada por gravedad (la presa se soporta por medio de su propio peso).

Una sección transversal común de una presa de arco puede moldearse como se muestra en la figura 36. El modelo para esta sección transversal es el siguiente:

\[
F(x) = \begin{cases}
0.03x^2 + 7.1x + 350, & -70 \leq x \leq -16 \\
389, & -16 < x < 0 \\
-6.593x + 389, & 0 \leq x \leq 59
\end{cases}
\]

Para formar el arco de la presa, esta sección transversal se gira a través de un arco, rotándola cerca del eje y. El número de grados a través del que gira y la longitud del eje de rotación varía de acuerdo, principalmente, con la variación del nivel de agua. Una posible configuración puede tener una rotación de 150° y un eje de rotación de 150 pies.

Responde las siguientes preguntas.

1. Determina el área de una sección transversal de la presa.
2. Describe una estrategia para determinar el volumen de concreto que se necesitaría para construir esta presa.
3. Aplica la estrategia para estimar el volumen de concreto necesario para construir la presa.
¿Ya estoy preparado(a)?

Límites

Resuelve los siguientes problemas:

1. Responde Verdadero (V) o Falso (F) para cada una de las siguientes afirmaciones. En caso de ser falsa, explica por qué lo es o describe un ejemplo en el que se muestre que la afirmación es falsa.
 a) Si \(\lim_{x \to c} f(x) = L \), entonces \(f(c) = L \)
 b) Si \(f(c) = L \), entonces \(\lim_{x \to c} f(x) = L \)
 c) Si \(f \) no está definida en \(x = c \), entonces el \(\lim_{x \to c} f(x) \) no existe.
 d) \(\lim_{x \to 0} \frac{|x|}{x} = 1 \)
 e) Si \(f(x) = g(x) \) para todos los números reales que no sean \(x = 0 \), y \(\lim_{x \to 0} f(x) = L \) entonces \(\lim_{x \to 0} g(x) = L \).
 f) \(\lim_{x \to 2} f(x) = 3 \), donde \(f(x) = \begin{cases} 3, & x \leq 2 \\ 0, & x > 2 \end{cases} \)
 g) Si \(\lim_{x \to -\infty} f(x) = -\infty \) y \(\lim_{x \to -c^+} f(x) = \infty \), entonces \(\lim_{x \to -c} f(x) = 0 \)
 h) La expresión \(\lim_{x \to c} f(x) = L \), significa que los valores de \(f(x) \) están tan cercanos como queramos al número \(L \), siempre y cuando los valores de \(x \) estén suficientemente cerca de \(c \).
 i) Si \(\lim_{x \to c} f(x) = L \) y \(f(c) = L \), entonces \(f(x) \) es continua en \(x = c \)

2. Un gas es mantenido a temperatura constante dentro de un cilindro. Cuando este gas es comprimido su volumen \(V \) disminuye, hasta que se llega a una presión \(P \) crítica. Al rebasar esta presión el gas se convierte en un líquido. Utiliza la gráfica que se muestra a continuación para calcular e interpretar los límites siguientes:

 a) \(\lim_{P \to 100^-} V \)
 b) \(\lim_{P \to 100^+} V \)
¿Ya estoy preparado(a)?

Razón de cambio

Resuelve los siguientes problemas:

3. La temperatura en la ciudad de Puebla, México, durante la noche del 12 de Enero se muestra en la siguiente tabla:

<table>
<thead>
<tr>
<th>t (hrs.)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. (°C)</td>
<td>-1</td>
<td>-1.8</td>
<td>-2.6</td>
<td>-3.4</td>
<td>-4.2</td>
<td>-5.0</td>
<td>-5.8</td>
</tr>
</tbody>
</table>

a) Calcula la razón de cambio promedio de la temperatura de las 0 hrs. a las 2 a.m.
b) Calcula la razón de cambio promedio de la temperatura de las 2 a.m. a las 6 a.m.
c) ¿Podrías decir que la temperatura bajo más rápido en algún intervalo de tiempo?
d) Escribe una expresión algebraica para la temperatura como función del tiempo.
e) Realiza la gráfica de la función propuesta en el inciso anterior.
f) Calcula la temperatura a las 3:30 hrs.

4. Se lanza una pelota hacia arriba con una velocidad de 120 m/s. Su altura en metros después de t segundos se expresa con $A(t) = 120t - 4.9t^2$.

a) Calcula la velocidad promedio de la pelota durante el intervalo de 1 a 4s.
b) Calcula la velocidad promedio de la pelota durante el intervalo de 5 a 12s.
c) ¿En cuál de los intervalos de tiempo descritos en los incisos anteriores la pelota viajo más despacio? ¿Por qué?
d) Calcula la velocidad promedio durante el intervalo de 14 a 20 segundos. Explica tu resultado.
e) ¿Cuánto tiempo tarda la pelota en llegar al suelo?
f) Realiza la gráfica de la función $A(t)$.

5. Una población de moscas crece dentro de un gran recipiente, de modo que el número de moscas P (en cientos) a las t semanas está dado por $P(t) = 36t^3 - t^4 + 5$.

a) Calcula la razón de crecimiento promedio durante las primeras 4 semanas.
b) Calcula la razón de crecimiento promedio de la semana 5 a las semana 6. Explica tu resultado.
c) Calcula la razón de cambio instantáneo a las 4 semanas y media.
d) Calcula la razón de cambio instantáneo a las 6 semanas.
e) Realiza la gráfica de la función $P(t)$.
6. Un globo esférico se infla y su radio (en centímetros) a los \(t \) minutos puede calcularse mediante la función: \(r(t) = \frac{2t}{3} \) para \(0 \leq t \leq 10 \).
 a) Escribe el volumen en función del tiempo.
 b) Calcula la razón de cambio instantáneo del radio con respecto al tiempo cuando \(t = 2 \).
 c) Calcula la razón de cambio instantáneo del radio con respecto al tiempo cuando \(t = 8 \).
 d) Calcula la razón de cambio instantáneo del volumen con respecto al radio cuando \(t = 7 \).
 e) Calcula la razón del cambio instantáneo del volumen con respecto al tiempo cuando \(t = 6 \).

7. Un cohete que se tiene emplazado al pie de una colina, cuya pendiente es \(1/5 \), se dispara hacia la loma y sigue una trayectoria dada por
 \[y(x) = 1.6x - 0.016x^2 \]
 a) Calcula la pendiente de la trayectoria del cohete en el momento del disparo.
 b) Calcula la pendiente de la trayectoria cuando el cohete choca contra la colina.
 c) ¿Cuál es la velocidad instantánea del cohete en el momento de impacto contra la colina?
 d) Calcula la altura máxima del cohete sobre el suelo.
 e) Realiza la gráfica que ejemplifique la trayectoria del cohete y de la colina.

Máximos y mínimos

Resuelve los siguientes problemas:

8. Se quiere construir un bote cilíndrico con un volumen de 1 litro (1000cm³).
 a) Describe la función área que depende solo del radio, \(A(r) \), es decir, la cantidad de material en términos del radio del cilindro.
 b) ¿Qué radio \(r \) y altura \(h \) del bote minimizarán la cantidad de material que se requiere?
 c) Realiza la gráfica de la función \(A(r) \) y su derivada.
9. Si un proyectil es lanzado verticalmente hacia arriba (sin considerar la resistencia del aire), desde una altura inicial de 68.6m y con velocidad inicial de 352.8m/s

a) ¿Cuál es el modelo matemático que representa la situación? Sugerencia: Galileo Galilei

\[d(t) = -4.9t^2 + V_0t + d_0 \]

b) ¿Cuál es la velocidad instantánea para todo tiempo del un proyectil?
c) ¿Cuál es la velocidad instantánea del un proyectil en 3 y 7 segundos?
d) ¿Cuál es la velocidad instantánea del un proyectil en el momento de impacto con el suelo?
e) ¿Cuál es la altura máxima que alcanza el proyectil?
f) ¿Cuál es la velocidad instantánea del un proyectil en 36 segundos? Explica tu respuesta.
g) Realiza la gráfica que describe la distancia recorrida por el proyectil, \(d(t) \), y la velocidad instantánea en la altura máxima.

10. Durante el periodo de 1950 a 1970, el Producto Interno Bruto (PNB) de cierto país se encontraba dado por la fórmula \(p(x) = 5 + 0.1x + 0.01x^2 \) en miles de millones de dólares (aquí la variable \(x \) se utiliza para medir los años, para \(x = 0 \) corresponde al año 1950 y para \(x = 20 \) al año 1970). Determina las tasas de crecimiento instantáneas del PNB en \(x = 1950 \), \(x = 1960 \) y \(x = 1970 \).

Aplicaciones

11. La temperatura en la Ciudad de México durante dos días de primavera está dada por la función \(T(t) = -10\sin(\pi t / 12) + 15 \) con \(t \) medido en horas y la temperatura \(T \) medida en grados Celsius.
183

a) Elabora una tabla de la temperatura, considerando valores de 0 a 48, cada tres horas.
b) Traza la gráfica de la función temperatura
c) ¿En qué intervalos de tiempo la temperatura está bajando y en cuáles está subiendo?
d) Calcula la razón instantánea de cambio de la temperatura a las 3, 6, 9, y 12 horas.
e) Encuentra y grafica la función razón de cambio instantánea de la temperatura.
f) ¿A qué hora del día se incrementa más rápido la temperatura?

12. Un carrito se encuentra unido a la pared, por medio de un resorte. El resorte se comprime hasta una distancia de 20 centímetros de la posición de equilibrio $x = 0$, y en el instante $t = 0$ se suelta. En una situación ideal (sin fricción) el carrito oscilará entre las posiciones $x = -20$ y $x = 20$. El carrito tarda 8 segundos en regresar a su posición inicial.

![Resorte y Carrito](image)

$x = 0$

a) Elabora una tabla de las posiciones que toma el carrito en los primeros 8 segundos.
b) Traza la gráfica de la función posición.
c) Calcula la razón de cambio promedio de la posición a los t segundos: de los 3 a los 4 segundos; y de los 5 a los 6 segundos. Interpreta tus resultados.
d) ¿Cuál será la velocidad instantánea del carrito a los 4 segundos?
e) ¿En qué momento estará moviéndose más rápido el carrito?

Segunda Parte

Cálculo Integral

Resuelve los siguientes problemas:

1. Una partícula se mueve a lo largo de una recta, de modo que su velocidad es $v(t) = t^2 - t + 6$, donde t es el tiempo medido en segundos y la velocidad está medida en metros por segundo.
a) Calcula la distancia recorrida entre los segundos \(t = 1 \) y \(t = 3 \).

b) Realiza la gráfica que esquematiza la velocidad y la distancia con respecto del tiempo.

2. Una partícula se mueve a lo largo de una recta de modo que su aceleración es \(a(t) = t + 5 \) y su velocidad inicial es \(v(0) = 4 \), con \(t \) medido en segundos y la velocidad medida en metros por segundo.
 a) Encuentra la función velocidad de la partícula.
 b) Calcula la distancia recorrida durante el tiempo de \(t = 0 \) a \(t = 8 \) y realiza la gráfica de la función \(v(t) \).

3. Se lanza una pelota de béisbol hacia arriba, sin resistencia del aire, desde una altura de 2 metros y con una velocidad de 10 metros por segundo.
 a) Determine la altura máxima que alcanza.
 b) ¿A qué velocidad inicial se debe lanzar un objeto hacia arriba (desde una altura inicial de 2 metros) para que alcance una altura máxima de 200 metros?
 c) Realiza la gráfica de \(d(t) \) del inciso b) y la representación de la velocidad de la pelota al tiempo \(t = 6.35 \) segundos.

 En diversos fenómenos naturales y procesos sociales, como la dinámica poblacional estudiada en la Sección 2.1 o la ley de enfriamiento de Newton tratada en la Sección 2.3.2 y 2.7, se hace uso del cálculo a partir del modelo matemático que describe la razón de cambio de la variable involucrada en relación proporcional con el valor de dicha variable. Esto es, si la variable \(y \) es una función que depende del tiempo, \(t \), en la situación o problema a tratar, entonces la relación de proporcionalidad puede escribirse como sigue:

\[
\frac{dy}{dt} = ky
\]

donde \(k \) es la constante de proporcionalidad y la ecuación diferencial representa el modelo de crecimiento y decrecimiento en distintos fenómenos naturales y procesos sociales de estudio.

I) Demuestra el siguiente resultado:

Teorema: Crecimiento exponencial y modelo de decrecimiento.

Si \(y \) es una función diferenciable en \(t \) tal que \(y > 0 \) y \(y' = ky \), para alguna constante \(k \), entonces

\[
y = Ce^{kt}
\]

es la solución general de la ecuación diferencial \(y' = ky \). Donde \(C \) es el **valor inicial** de \(y \) y \(k \) es la **constante de proporcionalidad**. El crecimiento
exponencial tiene lugar cuando $k > 0$ y el **decrecimiento exponencial** tiene lugar cuando $k < 0$.

II) Desintegración radioactiva. El peor accidente nuclear en la historia sucedió en 1986 en la planta nuclear de Chernobyl, cerca de Kiev, en Ucrania. Una explosión destruyó uno de los cuatro reactores de la planta, liberando grandes cantidades de isótopos radioactivos en la atmósfera.

La desintegración radioactiva se mide en términos del período de descomposición, que son los años que se requieren para que la mitad de los átomos en una muestra de material radiactivo se descomponga. Los periodos de descomposición de algunos isótopos radiactivos comunes son los siguientes:

<table>
<thead>
<tr>
<th>Isótopo radioactivo</th>
<th>Periodo de descomposición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranio U-238</td>
<td>4,510,000,000 años</td>
</tr>
<tr>
<td>Plutonio Pu-239</td>
<td>24,360 años</td>
</tr>
<tr>
<td>Carbono C-14</td>
<td>5,730 años</td>
</tr>
<tr>
<td>Radio Ra-226</td>
<td>1,620 años</td>
</tr>
<tr>
<td>Einsteinio Es-254</td>
<td>270 días</td>
</tr>
<tr>
<td>Nobelio No-257</td>
<td>23 segundos</td>
</tr>
</tbody>
</table>

a) Si suponemos que 10 gramos del isótopo del plutonio Pu-239 se escaparon en el accidente nuclear de Chernobyl. ¿Cuánto tiempo tomará para que los 10 gramos se descompongan en 1 gramo?

b) Si el radio radioactivo tiene una vida media de 1,620 años (véase tabla anterior) aproximadamente. ¿Qué porcentaje de una cantidad dada persiste después de 100 años?

c) Completa la siguiente tabla:

<table>
<thead>
<tr>
<th>Isótopo</th>
<th>Vida media (en años)</th>
<th>Cantidad inicial (en gramos)</th>
<th>Cantidad después de 1000 años</th>
<th>Cantidad después de 10,000 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra-226</td>
<td>1,620</td>
<td>10 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ra-226</td>
<td>1,620</td>
<td>0.5 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-14</td>
<td>5,730</td>
<td>5 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu-139</td>
<td>24,360</td>
<td>2.1 g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III) Crecimiento de la población. Supongamos que cierta población experimental de moscas de la fruta crece de acuerdo a la ley de crecimiento exponencial. Se sabe que había 100 moscas después del segundo día del experimento y 300 después del cuarto.

a) ¿Cuántas moscas había aproximadamente en la población original (cuando $t = 0$)?

b) Realiza la gráfica de la función que representa la cantidad de moscas de la fruta con respecto al tiempo.
IV) **Disminución de ventas.** Cuatro meses después de parar la publicidad, una compañía manufacturera nota que sus ventas bajan de 100,000 a 80,000 unidades por mes.
 a) Si las ventas siguen un patrón exponencial de disminución, ¿cómo serán las ventas después de otros 2 meses?
 b) Realiza la gráfica de la función que representa las unidades vendidas con respecto al tiempo.

V) **Intensidad de un terremoto.** En la escala de Richter, la magnitud \(R \) de un terremoto de intensidad \(I \) es:
\[
R = \frac{\ln I - \ln I_0}{\ln 10}
\]
donde \(I_0 \) es la intensidad mínima utilizada como base de comparación. Si suponemos que \(I_0 = 1 \),
 a) Calcula la intensidad del terremoto de 1906 en san Francisco, Estados Unidos (\(R = 8.3 \)).
 b) Calcula la intensidad del terremoto de 1906 en el distrito Federal, México (\(R = 8.1 \)).
 c) Calcula el factor por el cual la intensidad se incrementa si la medición de la escala de Richter se duplica.
 d) Calcula la razón de cambio \(\frac{dR}{dI} \)

VI) **Aumento de peso.** Un señor compró en Estados Unidos un ternero que pesó 60 libras al nacer, se sabe que aumenta de peso a razón de
\[
\frac{dw}{dt} = k(1200 - w)
\]
donde \(w \) es el peso en libras y \(t \) es el tiempo en años.
 a) Encuentra y grafica las tres soluciones de la ecuación diferencial cuando la constante de proporcionalidad es \(k = 0.8, k = 0.9 \) y \(k = 1 \).
 b) Si el animal es vendido cuando su peso es de 800 libras, averigua el tiempo de venta según cada uno de los modelos del inciso a).
 c) ¿Cuál es el peso máximo del animal para cada uno de los modelos anteriores?

Recuerda verificar tus respuestas en el Apéndice 1.
Clave de respuestas

¿Con qué saberes cuento?

I. Puntograma Matemático.
1. A (-6, 5), B (3, -4), C (9, 2), D (3, 8), E (-6, -1). La figura obtenida es
2. De la figura obtenida en el puntograma anterior, el segmento DE se interseca en un punto “P” con el segmento AB. Con esta información realiza lo siguiente:
 b) Calcula el área del cuadrado PBCD. Respuesta 72 unidades cuadradas
 c) Muestra que el triángulo AEP es semejante al triángulo PBD. Respuesta: Por el criterio LAL de semejanza de triángulos. Los lados DP y BP son proporcionales con los lados AP y EP respectivamente: \(\frac{\sqrt{72}}{18} = \frac{\sqrt{72}}{18} \), y el ángulo comprendido entre dichos lados del triángulo AEP es congruente con su homólogo del triángulo PBD por tratarse de ángulos opuestos por el vértice.

II. Ecuaciones lineales.
Solución:
1. Inciso a)
2. a) \(S_1 = 12.50 + 0.75x \) y \(S_2 = 9.20 + 1.30x \)

 b) Gráfica
 c) Cuando se producen seis unidades los salarios son 17 dólares por hora con cualquier opción. Se debe elegir la posición 1 cuando se producen menos de seis unidades y la posición 2 en los demás casos.
3. 15 litros de una solución al 97% de ácido y 6 litros de la otra solución al 90% de ácido.
4. La velocidad del bote es de 12 kilómetros por hora, mientras que la velocidad del río es de 4 kilómetros por hora.

III. Relaciones y funciones.
1. Gráfica

2. Inciso c)
3. a) Función distancia: \(d(t) = -4.9t^2 + 78.4t \)
 b) Tempo de choque en 16 segundos.
 c) Alcanza la altura máxima de 313.6 metros en 8 segundos.
 d) Gráfica de la función distancia, \(d(t) \):

4. Son 18 personas las que integran el grupo y cada una de ellas paga 5 pesos por la escursión.
IV. Problema de movimiento

a) A las 4000 millas de radio que tiene la tierra le sumamos las alturas máxima y mínima de la órbita del Sputnik teniendo los valores siguientes:
 a=4580 millas
 b=4030 millas
Estos valores representan la distancia del centro al vértice de la elipse y la distancia del eje conjugado respectivamente:
Calculamos el valor de c por medio del teorema de Pitágoras y tenemos:
\[c = \sqrt{(4580)^2 - (4030)^2} \]
\[c = \sqrt{4735500} = 2176.1204 \text{ millas} \]
Con estos datos obtenemos la ecuación de la elipse:
\[\frac{X^2}{(4580)^2} + \frac{Y^2}{(4030)^2} = 1 \]

b) Calculamos la distancia Máxima:
\[a + c = 4580 + 2176.1204 = 6756.1204 \text{ millas} \]
Calculamos la distancia Mínima:
\[a - c = 4580 - 2176.1204 = 2403.8796 \]
Con la distancia máxima y mínima calculamos la nueva ecuación de la elipse con la precisión de una milla:
\[\frac{X^2}{(6756)^2} + \frac{Y^2}{(2404)^2} = 1 \]

b) Gráfica de la elipse
Unidad 1

Primera Parte

Actividad 1
¿Qué sabes sobre el movimiento y el cambio?

El objetivo de esta pregunta es invitarte a reflexionar sobre el movimiento y el cambio continuo que sufren los objetos o los fenómenos naturales y sociales, mismos que pueden modelarse aplicando ciertos principios matemáticos. Por ejemplo podemos calcular la cantidad de agua que fluye por un río en determinado tiempo, así como el tiempo que tardas en trasladarte en un transporte público, o el tiempo que tarda en descomponerse una manzana.

Actividad 2

1. Esta actividad pretende que empieces a aplicar elementos básicos para modelar determinados fenómenos climáticos sencillos; así, una vez construidos los modelos matemáticos, estos pueden aplicarse para predecir dichos fenómenos.

2. Se pretende que tengas consciencia de que los fenómenos climáticos tienen una influencia directa con tu forma de vida, de forma benéfica o negativa. El clima impacta en tu vida cotidiana, desde la forma en que te vistes, el tipo y la cantidad de productos agrícolas disponibles en tu comunidad, hasta la construcción de nuestras casas.

En cuanto a los sismos, se retoma este ejemplo debido a la relevancia para la sociedad mexicana; la pregunta es si podremos ser capaces de predecir la época en que sucederá un temblor, así como su magnitud.

3. Además de que investigues cuáles son los elementos que intervienen en la predicción del clima; tendrás que ser capaz de establecer la relación entre esos factores y la predicción, misma que se expresa como lenguaje matemático en una función.

Actividad 3

1. Mayo-junio, temperatura entre 20 a 25 grados Celsius y promedio de 18 a 10 mm de precipitación. El mes de julio tiene tan sólo 4 mm de promedio mensual de precipitación, sin embargo la temperatura es 30 grados C, demasiado alta.

2. Falso, en febrero llueve demasiado y es el mes más frío del año en Reynosa.
Actividad 4

1. ¿Está aumentando el número de sismos?

A partir de la información de la tabla y gráfico anterior, se observa que de 792 sismos totales en 1990 a considerar 4168 como dato preliminar del número de sismos en el año 2011, el aumento es bastante significativo y se debe en su mayoría a los sismos comprendidos entre 3 y 3.9 grados de magnitud Richter, donde se describe un aumento de 246 hasta llegar a 3321 sismos por año en el mismo periodo (1990-2011).

Actividad 5

Primera parte
1. El aire que contiene la atmósfera terrestre está deteniendo más al papel que a la moneda, lo que se debe a que la superficie del papel sin compactar es mayor. Pero cuando compactamos el papel, estamos disminuyendo la superficie, y por ende, caerá más rápido que antes.

Segunda parte
2. La diferencia entre la primera y la segunda parte del experimento (antes y después de comprimir el papel) es que en la primer parte el rozamiento del aire (resistencia) frena más al papel que a la moneda, y al disminuir el área del papel en la segunda parte ambos cuerpos caen prácticamente al mismo tiempo.

De hecho, el astronauta David Randolph Scott, uno de los hombres en llegar a la Luna, realizó el mismo experimento al dejar caer un martillo y una pluma en la luna. Como en dicho lugar no hay atmósfera, ambos objetos llegaron al suelo lunar al mismo tiempo.

3. Los cuerpos caen hacia el centro de la Tierra porque son atraídos por la fuerza de gravedad. Esta fuerza está relacionada con la masa de los cuerpos, es decir, todos los cuerpos crean su propio campo gravitatorio, pero como su masa es tan pequeña comparada con la de la Tierra, no lo notamos. Esta fuerza es ade-
más la responsable del peso de los cuerpos y genera una aceleración (cambio de velocidad en el tiempo) tanto en el papel como en la moneda, la cual es idéntica para ambos. Su nombre habitual es *aceleración de la gravedad* y su valor aproximado es de 9.81m/s^2. Para resumir: todos los cuerpos son acelerados hacia el centro de la Tierra con la misma intensidad.

Autoevaluación

1. A continuación te presentamos lista de cotejo que te servirá para evaluar tu reporte de investigación. Observa cada uno de los indicadores y responde lo correspondiente en las columnas de la derecha. Este instrumento te permitirá autoevaluar tu desempeño y mejorar los indicadores.

Lista de cotejo para evaluar un cuadro sinóptico

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Hecho</th>
<th>No realizado</th>
</tr>
</thead>
<tbody>
<tr>
<td>La información del documento se relaciona con el tema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiene la información más importante del tópico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existe una relación entre los conceptos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualmente es claro el orden de la información</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establece categorías claras</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Esta pregunta, con sus tres incisos considera lo que se ha visto a lo largo del curso (ver pregunta 2 de la Actividad 1): la utilidad del cálculo en la vida cotidiana para analizar procesos físicos, como el clima y sociales.

3. a) La función distancia que describe el movimiento del proyectil en función del tiempo, ver sección 1.2, está dada por:

$$d(t) = \frac{1}{2} gt^2 - 19.6t + 147,$$

donde $g = -9.8 \text{m/s}^2$ es el valor de la aceleración debido a la gravedad.

b)
Tabla 3. Velocidad promedio de un proyectil en caída libre con función distancia, \(d(t) = -4.9t^2 - 19.6t + 147 \)

<table>
<thead>
<tr>
<th>Tiempo inicial (t_i)</th>
<th>Distancia inicial, (d(t_i) = -4.9t_i^2 - 19.6t_i + 147)</th>
<th>Incremento en la distancia, (\Delta d(t) = d(t_f) - d(t_i))</th>
<th>Incremento en el tiempo, (\Delta t = t_f - t_i)</th>
<th>Velocidad promedio, (\frac{\Delta d(t)}{\Delta t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>-40.4250</td>
<td>-33.0750</td>
<td>0.50</td>
<td>-66.150</td>
</tr>
<tr>
<td>4.6</td>
<td>-46.8440</td>
<td>-26.6560</td>
<td>0.40</td>
<td>-66.640</td>
</tr>
<tr>
<td>4.7</td>
<td>-53.3610</td>
<td>-20.1390</td>
<td>0.30</td>
<td>-67.130</td>
</tr>
<tr>
<td>4.8</td>
<td>-59.9760</td>
<td>-13.5240</td>
<td>0.20</td>
<td>-67.620</td>
</tr>
<tr>
<td>4.9</td>
<td>-66.6890</td>
<td>-6.8110</td>
<td>0.10</td>
<td>-68.110</td>
</tr>
<tr>
<td>4.99</td>
<td>-72.8145</td>
<td>-0.6855</td>
<td>0.010</td>
<td>-68.5510</td>
</tr>
<tr>
<td>4.999</td>
<td>-73.43140</td>
<td>-0.06860</td>
<td>0.0010</td>
<td>-68.59510</td>
</tr>
<tr>
<td>4.9999</td>
<td>-73.493140</td>
<td>-0.006860</td>
<td>0.00010</td>
<td>-68.599950</td>
</tr>
<tr>
<td>4.99999</td>
<td>-73.4993140</td>
<td>-0.0006860</td>
<td>0.000010</td>
<td>-68.599995094</td>
</tr>
<tr>
<td>4.999999</td>
<td>-73.49993140</td>
<td>-0.00006860</td>
<td>0.0000010</td>
<td>-68.599999373</td>
</tr>
<tr>
<td>(t_f) 5</td>
<td>-73.5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0000001</td>
<td>-73.500006860</td>
<td>0.000006860</td>
<td>0.0000010</td>
<td>-68.6000005098</td>
</tr>
<tr>
<td>5.00001</td>
<td>-73.50006860</td>
<td>0.00006860</td>
<td>0.000010</td>
<td>-68.60004927</td>
</tr>
<tr>
<td>5.001</td>
<td>-73.5006860</td>
<td>0.0006860</td>
<td>0.0010</td>
<td>-68.60490</td>
</tr>
<tr>
<td>5.01</td>
<td>-73.51865</td>
<td>0.6865</td>
<td>-0.010</td>
<td>-68.6490</td>
</tr>
<tr>
<td>5.1</td>
<td>-80.4090</td>
<td>6.9090</td>
<td>-0.10</td>
<td>-69.090</td>
</tr>
<tr>
<td>5.2</td>
<td>-87.4160</td>
<td>13.9160</td>
<td>-0.20</td>
<td>-69.580</td>
</tr>
<tr>
<td>5.3</td>
<td>-94.5210</td>
<td>21.0210</td>
<td>-0.30</td>
<td>-70.070</td>
</tr>
<tr>
<td>5.4</td>
<td>-101.7240</td>
<td>28.2240</td>
<td>-0.40</td>
<td>-70.560</td>
</tr>
<tr>
<td>5.5</td>
<td>-109.0250</td>
<td>35.5250</td>
<td>-0.50</td>
<td>-71.050</td>
</tr>
</tbody>
</table>

I. A partir del análisis de los datos en la última columna de la tabla anterior, se observa que la velocidad del proyectil en el tiempo \(t=5 \) tiende al valor constante de -68.6 metros por segundo.

II. (Imagen) \(d(t) = -4.9t^2 - 19.6t + 147 \)
En lenguaje matemático, la velocidad instantánea se expresa de la siguiente forma:

\[v_{\text{instantánea}} = \lim_{\Delta t \to 0} \{ v_{\text{promedio}} \} = \lim_{\Delta t \to 0} \left\{ \frac{\Delta d}{\Delta t} \right\}, \]

Es decir, en términos del problema planteado se tiene que

\[v_{\text{instantánea}} = \lim_{\Delta t \to 0} \left\{ \frac{-4.9(t + \Delta t)^2 - 19.6(t + \Delta t) + 147 - (-4.9t^2 - 19.6t + 147)}{\Delta t} \right\} \equiv \lim_{\Delta t \to 0} \{-9.8t - 4.9\Delta t - 19.6\} \]

\[v_{\text{instantánea}} = -9.8t - 19.6 \]

es la velocidad del proyectil para cualquier instante \(t \).

c) I. La función distancia que describe el movimiento del proyectil en función del tiempo, ver sección 1.2, está dada por: \(d(t) = \frac{1}{2} gt^2 + 98t + 245 \), donde \(g = -9.8 \frac{m}{s^2} \) es el valor de la aceleración debido a la gravedad.

II. Tabla 3. Velocidad promedio de un proyectil en caída libre con función distancia, \(d(t) = -4.9t^2 + 98t + 245 \)
<table>
<thead>
<tr>
<th>t</th>
<th>d(t)</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>704.3750</td>
<td>11.0250</td>
<td>0.50</td>
<td>22.050</td>
</tr>
<tr>
<td>7.6</td>
<td>706.7760</td>
<td>8.6240</td>
<td>0.40</td>
<td>21.560</td>
</tr>
<tr>
<td>7.7</td>
<td>709.0790</td>
<td>6.3210</td>
<td>0.30</td>
<td>21.070</td>
</tr>
<tr>
<td>7.8</td>
<td>711.2840</td>
<td>4.1160</td>
<td>0.20</td>
<td>20.580</td>
</tr>
<tr>
<td>7.9</td>
<td>713.3910</td>
<td>2.0090</td>
<td>0.10</td>
<td>20.090</td>
</tr>
<tr>
<td>7.99</td>
<td>715.2035</td>
<td>0.1965</td>
<td>0.010</td>
<td>19.6490</td>
</tr>
<tr>
<td>7.999</td>
<td>715.38040</td>
<td>0.01960</td>
<td>0.0010</td>
<td>19.60490</td>
</tr>
<tr>
<td>7.9999</td>
<td>715.398040</td>
<td>0.001960</td>
<td>0.00010</td>
<td>19.600490</td>
</tr>
<tr>
<td>7.99999</td>
<td>715.3998040</td>
<td>0.0001960</td>
<td>0.000010</td>
<td>19.6000490</td>
</tr>
<tr>
<td>7.999999</td>
<td>715.39998040</td>
<td>0.00001960</td>
<td>0.0000010</td>
<td>19.600004859</td>
</tr>
<tr>
<td>7.9999999</td>
<td>715.399998040</td>
<td>0.000001960</td>
<td>0.00000010</td>
<td>19.600000714</td>
</tr>
<tr>
<td>8.000</td>
<td>715.400001960</td>
<td>-0.000001960</td>
<td>-0.00000010</td>
<td>19.5999986144</td>
</tr>
<tr>
<td>8.001</td>
<td>715.40001960</td>
<td>-0.00001960</td>
<td>-0.0000010</td>
<td>19.599995213</td>
</tr>
<tr>
<td>8.01</td>
<td>715.401960</td>
<td>-0.01960</td>
<td>-0.0010</td>
<td>19.5510</td>
</tr>
<tr>
<td>8.1</td>
<td>717.3110</td>
<td>-1.9110</td>
<td>-0.10</td>
<td>19.110</td>
</tr>
<tr>
<td>8.2</td>
<td>719.1240</td>
<td>-3.7240</td>
<td>-0.20</td>
<td>18.620</td>
</tr>
<tr>
<td>8.3</td>
<td>720.8390</td>
<td>-5.4390</td>
<td>-0.30</td>
<td>18.130</td>
</tr>
<tr>
<td>8.4</td>
<td>722.4560</td>
<td>-7.0560</td>
<td>-0.40</td>
<td>17.640</td>
</tr>
<tr>
<td>8.5</td>
<td>723.9750</td>
<td>-8.5750</td>
<td>-0.50</td>
<td>17.150</td>
</tr>
</tbody>
</table>

III. A partir del análisis de los datos en la última columna de la tabla anterior, se observa que la velocidad del proyectil en el tiempo t=8 tiende al valor constante de 19.6 metros por segundo.

IV.

V. 735 metros es la altura máxima del proyectil.

VI. El tiempo de choque con el suelo es de 22.25 segundos después de iniciado el recorrido del proyectil.
VII. En lenguaje matemático, la velocidad instantánea se expresa de la siguiente forma:

\[v_{\text{instantánea}} = \lim_{\Delta t \to 0} \{ v_{\text{promedio}} \} = \lim_{\Delta t \to 0} \left(\frac{\Delta d}{\Delta t} \right), \]

Es decir, en términos del problema planteado se tiene que

\[v_{\text{instantánea}} = \lim_{\Delta t \to 0} \left\{ \frac{-4.9(t + \Delta t)^2 + 98(t + \Delta t) + 245 - (-4.9t^2 + 98t + 245)}{\Delta t} \right\} = \]

\[= \lim_{\Delta t \to 0} \left\{ -9.8t - 4.9\Delta t + 98 \right\} \]

\[v_{\text{instantánea}} = -9.8t + 98 \]

Es la velocidad del proyectil para cualquier instante \(t \).

d)

I.

II. \[m(2.01) = \frac{1}{2}(2.01)^2 + 2.01 \]

\[m(2) = \frac{1}{2}(2)^2 + 2 \]

Entonces el crecimiento en dicho intervalo es:

\[m(2.01) - m(2) = 4.03005 - 4 = 0.03005 \text{ gramos} \]
III. El crecimiento promedio en dicho intervalo es:

\[C_{\text{prom}} = \frac{m(2.01) - m(2)}{2.01 - 2} = \frac{0.03005}{0.01} = 3.005 \text{ gramos} \]

IV. En lenguaje matemático, el crecimiento instantáneo se expresa de la siguiente forma:

\[C_{\text{instantáneo}} = \lim_{\Delta t \to 0} \left\{ C_{\text{promedio}} \right\} = \lim_{\Delta t \to 0} \left\{ \frac{\Delta C}{\Delta t} \right\}, \]

Es decir, en términos del problema planteado se tiene que

\[C_{\text{instantáneo}} = \lim_{\Delta t \to 0} \left\{ \frac{1}{2} \left[(2+\Delta t)^2 + (2+\Delta t) - \left(\frac{1}{2} \cdot 2^2 + 2 \right) \right] \right\} = \lim_{\Delta t \to 0} \left\{ 2 + \frac{1}{2} \Delta t + 1 \right\} \]

\[C_{\text{instantáneo}} = 2 + 1 = 3 \]

es el crecimiento instantáneo del cultivo de bacterias para el instante \(t = 2 \).

V. En lenguaje matemático, el crecimiento instantáneo se expresa de la siguiente forma:

\[C_{\text{instantáneo}} = \lim_{\Delta t \to 0} \left\{ C_{\text{promedio}} \right\} = \lim_{\Delta t \to 0} \left\{ \frac{\Delta C}{\Delta t} \right\}, \]

Es decir, en términos del problema planteado se tiene que

\[C_{\text{instantáneo}} = \lim_{\Delta t \to 0} \left\{ \frac{1}{2} (t+\Delta t)^2 + (t+\Delta t) - \left(\frac{1}{2} t^2 + t \right) \right\} = \lim_{\Delta t \to 0} \left\{ t + \frac{1}{2} \Delta t + 1 \right\} \]

\[C_{\text{instantáneo}} = t + 1 \]

es el crecimiento instantáneo del cultivo de bacterias para cualquier instante \(t \).

4. Esta actividad obliga a que el estudiante investigue en campos como la física, la biología, la economía, y sociología para que encuentre los ejemplos que se le piden.

5. A continuación te presentamos una escala de clasificación que te servirá para evaluar tu reporte de investigación. Observa cada uno de los indicadores y res-
ponde lo correspondiente en las columnas de la derecha. Este instrumento te permitirá autoevaluar tu desempeño y mejorar los indicadores.

Escala de clasificación para evaluar un reporte de investigación

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Excelente</th>
<th>Regular</th>
<th>No satisfactorio / No lo contiene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contiene la información más importante del tópico tratado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establece el tipo de investigación del cual se trata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiene la información solicitada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiene nombre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiene un pequeño resumen de la investigación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiene una introducción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiene tratamiento del problema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiene conclusiones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Las fuentes de consulta son actualizadas y diversas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utiliza los tecnicismos de manera adecuada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utiliza una redacción clara y sencilla, y con sus propias palabras</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Segunda parte

Actividad 6

A continuación te presentamos una lista de cotejo que te servirá para evaluar tu línea de tiempo. Observa cada uno de los indicadores y responde lo correspondiente en las columnas de la derecha. Este instrumento te permitirá autoevaluar tu desempeño y mejorar los indicadores.

Lista de cotejo para evaluar una Línea de tiempo

<table>
<thead>
<tr>
<th>Indicador</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determina la primera y última fecha a representar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Se abordan los tópicos principales de la investigación bibliográfica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Se expone y es clara la escala de medición utilizada (meses, años, lustros, siglos, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Se ubican palabras e ideas clave que reflejan aspectos importantes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Los eventos están expuestos en orden cronológico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Utiliza diferentes tipos o colores de línea para distinguir cada período o acontecimiento histórico.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Actividad 7

1. a)

b)

c)
2. a) \[d(t) = -2t^2 + 7 \]

b) \[f(x) = x^2 - 10 \]
Apéndice 1

c) \[g(x) = -x^2 + x \]

d) \[h(x) = x^2 + 2x + 1 \]

3. a) \[f(x) = -e^x \]
Apéndice 1

b) \[g(x) = -\ln(x) \]

c) \[h(x) = \ln(x^2) \]

d) \[i(x) = e^{x^2} \]
Actividad 8

1. La función (modelo matemático) que representa los índices de contaminación es la siguiente:

 \[f(t) = e^{0.0013t + 3.17} \]

 donde \(t \) es el tiempo en años y \(f(t) \) se mide en ppm (partes por millón). La gráfica de la función se representa a continuación: [Insertar gráfico 6].

 La función \(f(t) \) representa la concentración de dióxido de carbono en la atmósfera – índices de contaminación.

Actividad 9

Utiliza los resultados anteriores para graficar la función lineal, \(P(t) = 1.65t + 48.2 \). Ahora bien, haciendo uso de la definición (1) podemos determinar la derivada de la función \(P(t) \), el ejercicio que debes hacer es:

 \[P'(x) = \lim_{\Delta t \to 0} \frac{P(t + \Delta t) - P(t)}{\Delta t} \]

 donde: \(P(t) = 1.65t + 48.2 \) y \(P(t + \Delta t) = 1.65(t + \Delta t) + 48.2 \).

 Respuesta:
Apéndice 1

Modelo poblacional $P(t) = 1.65t + 48.2$, donde $P(t)$ está en millones de habitantes y $t = 0$ representa el año 1970.

Comparación de datos del modelo lineal con los datos del Censo de Población en México (Fuente: INEGI)

<table>
<thead>
<tr>
<th>Año</th>
<th>INEGI - Población Total (millones de habitantes)</th>
<th>Modelo Lineal P(t) - Población Total (millones de habitantes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>97 483 412</td>
<td>97.7</td>
</tr>
<tr>
<td>2010</td>
<td>112 336 538</td>
<td>114.19</td>
</tr>
<tr>
<td>2030</td>
<td>No aplica</td>
<td>147.19</td>
</tr>
</tbody>
</table>

Actividad 10

1. El **efecto invernadero** es un fenómeno por el cual ciertos gases retienen parte de la energía emitida por el suelo tras haber sido calentado por la radiación solar. Se produce, por lo tanto, un efecto de calentamiento similar al que ocurre en un invernadero, con una elevación de la temperatura.

2. Gases implicados en el efecto invernadero

 - **Vapor de agua (H$_2$O).** El vapor de agua es un gas que se obtiene por evaporación o ebullición del agua líquida o por sublimación del hielo. Es el que más contribuye al efecto invernadero debido a la absorción de los rayos infrarrojos. Es inodoro e incoloro y, a pesar de lo que pueda parecer, las nubes o el vaho blanco de una cacerola o un congelador, vulgarmente llamado *vapor*, no son vapor de agua sino el resultado de minúsculas gotas de agua líquida o cristales de hielo.

 - **Dióxido de carbono (CO$_2$).** También denominado, gas carbónico y anhídrido carbónico, es un gas cuyas moléculas están compuestas por dos átomos de oxígeno y uno de carbono. Su fórmula química es CO$_2$.

204
• Metano (CH₄). El metano (del griego methy, vino, y el sufijo -ano) es el hidrocarburo alcano más sencillo, cuya fórmula química es CH₄. Cada uno de los átomos de hidrógeno está unido al carbono por medio de un enlace covalente. Es una sustancia no polar que se presenta en forma de gas a temperaturas y presiones ordinarias. Es incoloro e inodoro y apenas soluble en agua en su fase líquida. En la naturaleza se produce como producto final de la putrefacción anaeróbica de las plantas. Este proceso natural se puede aprovechar para producir biogás. Muchos microorganismos anaeróbicos lo generan utilizando el CO₂ como aceptor final de electrones. Constituye hasta el 97% del gas natural. En las minas de carbón se le llama grisú y es muy peligroso ya que es fácilmente inflamable y explosivo. El metano es un gas de efecto invernadero relativamente potente que podría contribuir al calentamiento global del planeta Tierra ya que tiene un potencial de calentamiento global de 23; pero que su concentración es bajísima. Esto significa que en una media de tiempo de 100 años cada Kg de CH₄ calienta la Tierra 23 veces más que la misma masa de CO₂, sin embargo hay aproximadamente 220 veces más dióxido de carbono en la atmósfera de la Tierra que metano por lo que el metano contribuye de manera menos importante al efecto invernadero.

• Óxidos de nitrógeno (NOₓ). El término óxidos de nitrógeno (NxOy) se aplica a varios compuestos químicos binarios gaseosos formados por la combinación de oxígeno y nitrógeno. El proceso de formación más habitual de estos compuestos inorgánicos es la combustión a altas temperaturas, proceso en el cual habitualmente el aire es el comburente.

• Ozono (O₃). El ozono (O₃), es una sustancia cuya molécula está compuesta por tres átomos de oxígeno, formada al disociarse los 2 átomos que componen el gas de oxígeno. Cada átomo de oxígeno liberado se une a otra molécula de oxígeno (O₂), formando moléculas de Ozono (O₃).

• Clorofluorocarbonos (artificiales). El clorofluorocarburo, clorofluorocarbono o clorofluorocarbonados (denominados también CFC) es cada uno de los derivados de los hidrocarburos saturados obtenidos mediante la sustitución de átomos de hidrógeno por átomos de flúor y/o cloro principalmente. Debido a su alta estabilidad fisicoquímica y su nula toxicidad, han sido muy usados como líquidos refrigerantes, agentes extintores y propelentes para aerosoles. Fueron introducidos a principios de la década de los años 30, del siglo pasado, por ingenieros de General Motors, para sustituir materiales peligrosos como el dióxido de azufre y el amoníaco.

3. Aunque el efecto invernadero se produce por la acción de varios componentes de la atmósfera planetaria, el proceso de calentamiento ha sido acentuado en las últimas décadas por la acción del hombre, con la emisión de dióxido de carbono, metano y otros gases.
4. El equilibrio natural entre el dióxido de carbono generado y el consumido es extraordinariamente frágil, pudiéndose romper fácilmente. La quema de biomasa, la eliminación de superficies forestales y, sobre todo, el aumento de los procesos de combustión empleando carburantes fósiles, han sido los causantes de que en los últimos años la generación de dióxido de carbono haya aumentado tan asombrosamente. El hombre, por tanto, está jugando un papel fundamental desequilibrando la balanza hacia el lado equivocado. La concentración atmosférica de CO$_2$ ha sufrido un considerable aumento en el siglo XX, especialmente en sus últimas décadas. Antes del comienzo de la revolución industrial (hacia 1750, cuando el escocés James Watt perfeccionó las máquinas de vapor) la concentración de CO$_2$ en la atmósfera era de unas 280 partes por millón (0,028%) y a principios del siglo XXI alcanza los 370 ppm (0,037%).

5. **Fuentes naturales de generación de dióxido de carbono**
 - El CO$_2$ ingresa a la atmósfera a través de la oxidación o combustión del carbono orgánico.
 - El dióxido de carbono es emitido durante la respiración de casi todas las formas de vida.
 - En la descomposición de la materia orgánica.
 - Se libera desde el interior de la Tierra a través de fenómenos tectónicos y a través de la respiración, procesos de suelos y combustión de compuestos con carbono y la evaporación oceánica.

6. **Fuentes antropogénicas de dióxido de carbono**
 - La quema de madera y otros tipos de biomasa (organismos muertos) también aporta cantidades considerables de dióxido de carbono.
 - Se produce en cada reacción de combustión, desde los incendios forestales a las centrales eléctricas pasando por las hornallas de la cocina, los fuegos para el asado del domingo, y la soldadura autógena.
 - El suministro y el uso de combustibles fósiles representan un 80% de las emisiones de dióxido de carbono de origen humano.
 - Manufactura de cemento.

7. Contaminación de los océanos, lo que lleva a la acidificación del mar, afectando así muchas especies. Y la contaminación atmosférica, lo que deriva en el efecto invernadero.

8. A partir de la Revolución industrial de mediados del siglo XIX, y debido principalmente al uso intensivo de combustibles fósiles en las actividades industriales y el transporte, se han producido sensibles incrementos en las cantidades de óxidos de nitrógeno y dióxido de carbono emitidas a la atmósfera, llegando a niveles sin precedentes y que probablemente no se tenían en los últimos 20 millones de años. Este crecimiento exponencial se ha identificado como una de las causas principales del calentamiento global. Se estima que también el metano está aumentando su presencia por razones antropogénicas (debidas a la
actividad humana). Además, a este incremento de emisiones se suman otros problemas, como la deforestación, que han reducido la cantidad de dióxido de carbono retenida en materia orgánica, contribuyendo así indirectamente al aumento antropogénico del efecto invernadero. Asimismo, el excesivo dióxido de carbono está acidificando los océanos y reduciendo el fitoplancton.

9. La Revolución Industrial marcó un punto de inflexión en la explotación de los recursos; las industrias requerían cada vez mayor cantidad de materias primas para poder crecer, el aumento de la demanda exigía sistemas más sofisticados para la obtención de los recursos y la tecnología los proporcionaba. En el periodo que va desde 1770 hasta 1900 la población mundial casi se duplicó, mientras que la extracción de minerales se multiplicó por 10. Desde 1900 hasta 1970 la producción mineral se multiplicó por 12, aunque la población era sólo 2.3 veces mayor. Esto nos da idea de cómo la humanidad incrementaba la explotación de los recursos naturales muy por encima de su crecimiento. Sencillamente, hemos tomado todo lo que necesitábamos de la naturaleza, sin pararnos a reflexionar sobre las consecuencias. La sobreexplotación de los recursos es una realidad a lo largo de nuestra historia reciente. Las economías emergentes (China, India, etc.) luchan por conseguir situarse a la altura de los países más desarrollados. El consumo se dispara y el nivel de vida aumenta cada vez más en los países industrializados. La humanidad sigue creciendo y el aumento de la población causa un gran impacto ambiental sobre la Tierra y sobre los recursos.

10. La quema de combustibles fósiles, cuyo aumento desde la Revolución Industrial hasta nuestros días no ha dejado de crecer, ha generado enormes cantidades de sustancias como los óxidos de azufre y de nitrógeno. Estas emisiones de óxidos se han visto implicadas en distintos procesos químicos hasta generar compuestos con carácter ácido (ácido nítrico y ácido sulfúrico básicamente), que precipitan en forma de lluvia sobre la superficie de la Tierra, causando importantes daños ambientales, ya que su pH es inferior a 5.6. Los casos más significativos se han documentado en Europa septentrional, en el este de Norteamérica y en Asia oriental. Los efectos ambientales más importantes que acompañan a este fenómeno son: la pérdida de masa forestal y la acidificación de lagos, con todos los perjuicios que esto puede suponer para la vida que acogen.

Otra importante consecuencia de la contaminación atmosférica es el smog. Este término aparece por primera vez en el año 1905, haciendo referencia a las palabras humo (smoke) y niebla (fog). El smog fotoquímico se da en zonas urbanas en las que se encuentran fácilmente islas de calor (acumulación de calor), lo que favorece que los contaminantes generados no se diluyan, sino que queden retenidos. El problema del smog es muy importante si se tiene en cuenta que aproximadamente la mitad de la población del mundo vive en ciudades. El smog se origina cuando los óxidos e hidrocarburos emitidos por los automó-
viles reaccionan con el oxígeno atmosférico, favorecidos por la energía del Sol, en un complejo sistema de transformaciones químicas que forman ozono (O3), entre otros productos.

Mantener el actual nivel de concentración de partículas de dióxido de carbono en la atmósfera terrestre costará casi el 0.3% del Producto Bruto mundial, mientras que si se logran reducir las emisiones entre un 50 y un 75% el coste se reduce al 0.12%, según las conclusiones del tercer grupo de trabajo del cuarto informe del Panel Intergubernamental sobre el Cambio Climático (IPCC), que llevó a cabo su reunión en la ciudad de Bangkok, Tailandia, en el año 2007. Según el informe, las emisiones mundiales de gases de efecto invernadero seguirán aumentando hasta el año 2015, en que se registrará un “pico”, para luego ir descendiendo paulatinamente si se quiere mantener la temperatura media mundial con un ascenso de no más de entre 2 y 2.4ºC. <<El mundo necesita reducir sus emisiones de gases contaminantes entre un 50 y un 75% en el año 2050 para poder mantener el calentamiento del planeta en unos niveles controlables>>, advierten los científicos del IPCC.

11. Algunas medidas que se pueden tomar para reducir la emisión de los gases que producen el efecto invernadero

En casa:

Con sólo unos pequeños cambios en casa y en nuestro jardín, podemos ayudar a reducir la emisión de gases de efecto invernadero y, además, ahorrar dinero.

- **Cambiar 5 bombillas:** cambie cinco bombillas de las que usa en casa por bombillas de bajo consumo. La próxima vez que tenga que comprar algún material eléctrico para su casa, compruebe que se encuentra etiquetado con la estrella de ahorro de energía.

- **Calentar y enfriar de forma razonable.** Limpie los filtros del aire acondicionado de forma regular y utilice la calefacción y aire acondicionado de forma razonable, a una temperatura normal, sin llegar a los extremos.

- **Selle su casa.** Tape las grietas y las rendijas que hay en las ventanas y puertas. Así evitará que se vayan el calor y el frío y también se sentirá más cómodo en casa.

- **Use energía verde.** La energía verde proviene de fuentes renovables como el viento y el sol. Siempre que pueda, use la energía verde. Todavía puede contribuir más si instala paneles solares. Infórmese de las subvenciones que hay para ayudarle a instalar este tipo de materiales.

- **Reducir, re-usar y reciclar.** Si existe algún programa de reciclado donde resida, infórmese. Reduzca el gasto, vuelva a usar materiales y recicle.

- **Si tiene jardín, utilice una cortadora de césped que funcione empujándola.** Este tipo de cortadora no utiliza energía y no emite gases nocivos.
• Ahorre agua. Todos podemos ahorrar agua. No deje el grifo abierto mientras se cepilla los dientes o se afeita. No use la taza del inodoro como una papeleera.
• Dúchese en lugar de bañarse. Procure ahorrar todo el agua caliente que pueda. Evite pérdidas de agua en los grifos. Repare las averías.
• Convencer a otros. Explique a 5 amigos y familiares lo que pueden hacer para contribuir a este proyecto. De esta forma, conseguirá que más hogares sigan los pasos para ahorrar en la emisión de gases invernadero.

En el trabajo:
En las oficinas y en los negocios, se usa una gran cantidad de energía. La calefacción, el aire acondicionado, la luz, los equipos electrónicos.
• Use equipos que ahorren energía. A la hora de adquirir equipos informáticos, compre material que pueda ahorrar energía.
• Apague las luces que no se estén utilizando. Si puede iluminar su lugar de trabajo con luz natural, mejor.
• Utilice bombillas de bajo consumo. Cuando tenga que comprar material eléctrico, que éste sea de ahorro de energía.
• Gaste menos para llegar al trabajo. Siempre que pueda, procure ir al trabajo usando el transporte público, vaya en bici o en tren. Los trayectos cortos en coche, cuando éste todavía está frío, causan un consumo mayor y, por lo tanto, emiten más dióxido de carbono. Si no tiene más remedio que usar el coche, procure usar un vehículo que gaste menos, preparado para no alterar o alterar menos el medio ambiente.
• Reducir, re-usar y reciclar. Si existe algún programa de reciclado donde trabaja, sigálo. Reduzca el gasto, vuelva a usar materiales y recicle. Vuelva a usar cartuchos de tinta, utilice papel reciclado.

En la carretera:
Usar gasolina o diesel emite dióxido de carbono a la atmósfera y contribuye al cambio climático, pero estas emisiones se pueden reducir mejorando las condiciones energéticas de su coche.
• Compre de forma inteligente: antes de comprar un vehículo, compruebe su aportación de gases nocivos a la atmósfera. Compre el que menos emita, ajustado a su presupuesto. Verifique si su coche es Flexible a la hora de utilizar gasolina. Algunos vehículos pueden usar un compuesto que contiene un 85% de etanol o la gasolina tradicional. El etanol proviene del maíz y emite menos dióxido de carbono. (Ya existen aproximadamente unos 5 millones de vehículos con esta característica).
• Conduzca racionalmente. Para ahorrar y, además, reducir la emisión de gases de efecto invernadero, procure no frenar y acelerar constantemente. Evite acelerar de forma brusca y no deje el motor en marcha cuando esté hablando con los amigos.
• Mantenimiento. Un coche bien mantenido será más eficiente y emitirá menos gases dañinos. Además, ¡es mucho más seguro!
• Compruebe las ruedas. Compruebe la presión de los neumáticos con regularidad. Un inflado incorrecto gasta más energía.
• Reuniones a larga distancia. Siempre que pueda, evite desplazamientos innecesarios. Si puede, mantenga sus reuniones por video-conferencia. Evitará el viaje en un medio de transporte, el gasto y reducirá la emisión de gases invernadero.

En vacaciones:
• Cuando esté de vacaciones o tenga un rato libre, procure usar el transporte público, la bicicleta o camine. Si deja su coche en casa u hotel sólo dos días a la semana, reducirá los gases que se emiten a la atmósfera

En su centro de estudios:
Los estudiantes, profesores, educadores y directores de los centros de estudios pueden contribuir en la reducción de los gases causantes del efecto invernadero.

Estudiantes.
• Implíquese en actividades que puedan reducir la emisión de gases nocivos.
• Intente convencer a otros para que se unan a la iniciativa y ahorrren en la emisión de los gases de efecto invernadero.
• Trabaje en conjunto con profesores y directores para buscar soluciones en su centro de estudios.

Profesores y educadores.
• Enseñe a sus alumnos sobre el cambio climático y el efecto que causa en los ecosistemas.
• Informe a sus alumnos sobre lo que pueden hacer en sus casas para reducir la emisión de los gases de efecto invernadero.
• Investigue lo que hacen otros centros para ahorrar en la emisión de los gases y únase a la iniciativa

Directores.
• Ahorrar. Puede ahorrar en su centro y, además, emitir menos gases de efecto invernadero si cambia los materiales que utilizan en su centro por otros de bajo consumo.
• Reducir, re-usar y reciclar. Invente un programa de reciclado y llévelo a la práctica en su centro. Reduzca el gasto, vuelva a usar materiales y recicle. Vuelva a usar cartuchos de tinta, recicle las pilas, utilice papel reciclado

Gobiernos:
Los gobiernos (a nivel nacional, regional, local, etc.), pueden tomar medidas para reducir la emisión de gases de efecto invernadero utilizando energías renovables que, además, facilitarán un importante ahorro, crearan empleos y promocionarán el crecimiento saludable.
Con la potestad de un gobierno se pueden hacer muchas cosas de suma importancia.

Como ciudadanos, es importante comprobar que nuestros gobernantes cumplan con las medidas de ahorro y pedirles que lo hagan.
- Mejorar la energía en los edificios y equipo. Utilizar paneles solares y/o energías renovables en los edificios y equipo del gobierno. Subvencionar a los particulares que quieran adherirse a la iniciativa.
- Instalar y hacer instalar tejados altamente reflectantes. De esta manera se ahorra dinero y se reduce la emisión. Un tejado reflectante evitará que los aparatos de calor y/o frío tengan que trabajar a mayor potencia.
- Equipos. Adquirir equipos informáticos, fotocopiadores y demás material de uso en una oficina, con la garantía de que reduce el consumo y la emisión de gases de efecto invernadero.
- Informar. Realizar campañas para informar a la población sobre cómo se pueden reducir las emisiones de gases de invernadero y los efectos del cambio climático.
- Transporte público. Un sistema efectivo de transporte público puede reducir considerablemente la emisión de gases de efecto invernadero, además de ayudar a descongestionar el tráfico.
- Utilizar energías limpias en los vehículos del gobierno.
- Crear carriles seguros para bicicletas. Esto reducirá el uso de los vehículos, evitará los problemas de tráfico y reducirá la emisión de gases de efecto invernadero.
- Crear más zonas verdes y proteger las ya existentes.
- Recogida de Basura. Tratar y reciclar la basura. Cargar un impuesto individual por el número de basura que se tira, incentiva al ahorro.

Con base en lo estudiado durante todo la unidad, responde a las siguientes preguntas.

Respuesta:
Gráfica: Modelo Exponencial de la Concentración de CO2 en la atmósfera.
Gráfica: Modelo Exponencial de la Concentración de CO2 y la respectiva variación de los índices de CO2 en la atmósfera.

5. Las rúbricas son instrumentos que permiten describir el grado de desempeño que muestra una persona en el desarrollo de una actividad o problema. A continuación te presentamos una que te servirá para evaluar resúmenes. Observa cada uno de los aspectos a evaluar y responde lo correspondiente en las columnas de la derecha. Este instrumento te permitirá autoevaluar tu desempeño y mejorar indicadores.

Rubrica para evaluar resúmenes

<table>
<thead>
<tr>
<th>Aspecto a evaluar</th>
<th>Excelente</th>
<th>Suficiente</th>
<th>No suficiente</th>
<th>Deficiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idea principal y secundarias</td>
<td>Señala claramente la idea central del tema y subordina a este las ideas secundarias. 20%</td>
<td>Señala la idea central pero no toma en cuenta las ideas secundarias. 15%</td>
<td>Falta claridad al señalar la idea principal, destacando más las ideas secundarias del texto. 10%</td>
<td>No señala la idea central Hay confusión al describir las ideas secundarias. 5%</td>
</tr>
</tbody>
</table>
Apéndice 1

<table>
<thead>
<tr>
<th>Aspecto a evaluar</th>
<th>Excelente</th>
<th>Suficiente</th>
<th>No suficiente</th>
<th>Deficiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprensión del tema</td>
<td>Respete la estructura y organización del texto base (inicio, desarrollo y final). Se expresa con sus propias palabras o puede ligar las frases que usa el autor de manera adecuada. Elimina material innecesario, secundario o redundante. 50%</td>
<td>Respete la organización del escrito. Liga frases del autor original del texto a frases elaboradas por el alumno adecuadamente, aunque redunda sobre comentarios previos. 45%</td>
<td>No toma en cuenta la organización del escrito, prevalecen las frases de los autores sobre los comentarios propios. Si elimina material innecesario o redundante. 30%</td>
<td>No respeta la organización del escrito. Lo expresado es un clásico “corta y pega” sin coherencia. Prevalencia del material innecesario y secundario sobre el adecuado y principal. 20%</td>
</tr>
<tr>
<td>Estilo, gramática y ortografía. 10%</td>
<td>Sin errores ortográficos o gramaticales, texto justificado, un solo tipo y tamaño de letra, color de la fuente sin contrastes marcados. 10%</td>
<td>Errores ortográficos o gramaticales mínimos (menos de 5), texto justificado, un solo tipo, tamaño y color de letra, visualmente agradable. 7.5%</td>
<td>Errores ortográficos y gramaticales (menos de 10), texto justificado, un solo tipo, tamaño y color de letra. 5%</td>
<td>Errores ortográficos y gramaticales múltiples (más de diez). Texto sin justificación, mezcla diferentes tipos y tamaños de letra. Colores visualmente desagradables. 2.5%</td>
</tr>
<tr>
<td>Redacción. 20%</td>
<td>Utiliza frases breves. Evita coloquialismos y palabras vulgares, sí las usa las “entrecomillla”. Repite la idea del autor con otras palabras. Si cita el texto lo hace de manera breve y con “comillas”. Sigue el orden propuesto y marca adecuadamente cada una de las partes. 20%</td>
<td>Utiliza frases breves. Usa algunos coloquialismos pero no palabras vulgares, y no los “entrecomilla”. Repite la idea del autor con otras palabras. Cita el texto de manera amplia y con “comillas”. Sigue el orden propuesto y marca adecuadamente cada una de las partes. 15%</td>
<td>Utiliza frases extensas. Usa coloquialismos pero no palabras vulgares, y no los “entrecomilla”. Repite la idea del autor de manera textual, aunque con “comillas”. Sigue el orden propuesto pero no marca adecuadamente cada una de las partes. 10%</td>
<td>Utiliza frases muy extensas. Usa coloquialismos y palabras vulgares sin “comillas”. Repite la idea del autor de manera textual sin “comillas”. No sigue el orden propuesto ni marca adecuadamente cada una de las partes. 5%</td>
</tr>
</tbody>
</table>

Autores: Alonso-Gastelum N; Chávez-González C; Castillejos-Anleu B; Torres-Barrera B; Pavía-Carrillo E.

http://www.e-itesca.edu.mx/RubricasITESCAVIRTUAL/resumen.html

Actividad 11

1. ¿De qué rangos de edad fueron las personas contagiadas por la influenza?
 Respuesta:
 Los grupos de edad más afectados eran los de 5 a 14 y 25 a 44 años, pero esto se atribuyó a la acumulación de elementos susceptibles en esos grupos, dado que no se habían vacunado por tratarse de grupos no considerados como prioritarios para la vacunación contra la influenza estacional.

2. ¿Cuáles fueron las medidas que el gobierno de México tomó para hacer frente a la enfermedad?
 Respuesta:
El gobierno movilizó al ejército y se entregaron seis millones de cubrebocas a los ciudadanos alrededor de la Ciudad de México, medida que no bastó dada la población capitalina que supera por mucho la cantidad de los mismos. Desde el 24 de abril de 2009, las escuelas (desde preescolar hasta universidad), así como bibliotecas, museos, conciertos y cualquier lugar público de reunión, fueron cerradas por el gobierno de la Ciudad de México y su vecino el Estado de México para prevenir la propagación de la enfermedad. Las clases en el estado de Coahuila originalmente fueron canceladas el 27 y 28 de abril, hasta que se decretó la suspensión en todo el país hasta el 6 de mayo. Marcelo Ebrard, Jefe de Gobierno del Distrito Federal, pidió a todos los establecimientos nocturnos cerrar sus establecimientos durante diez días para evitar nuevas infecciones.

Véase: http://www.promocion.salud.gob.mx/dgps/interior1/lineamientos_influenza.html

3. Investiga cuál es el significado de “comorbilidad”

Respuesta:
La Organización Mundial de la Salud (OMS) define la comorbilidad o diagnóstico dual como la coexistencia en el mismo individuo de un trastorno inducido por el consumo de una sustancia psicoactiva y de un trastorno psiquiátrico (OMS, 1995). De conformidad con la Oficina de las Naciones Unidas contra la Droga y el Delito (ONUDD), una persona con diagnóstico dual es una persona a la que se le ha diagnosticado un problema por el consumo abusivo de alcohol o drogas además de otro tipo de diagnóstico, normalmente de carácter psiquiátrico, por ejemplo, trastornos anímicos o esquizofrenia (PINUCD, 2000). En otras palabras, la comorbilidad en este contexto se refiere a la coexistencia temporal de dos o más trastornos psiquiátricos o de personalidad, uno de los cuales se deriva del consumo problemático de sustancias (véase: http://ar2004.emcdda.europa.eu/es/page119-es.html).

4. ¿Qué acontecimiento social, político o económico ocurrió cuando se dio a conocer el brote de influenza humana en México y el mundo?

5. ¿Cuáles fueron los efectos sociales, políticos y económicos generados de la aparición del virus A H1N1?

6. ¿A qué crees que se deba que algunos médicos asocien enfermedades de animales en los seres humanos (mutación)?

Respuesta a las preguntas 4, 5 y 6:
Ve el documento titulado: Evaluación preliminar del impacto en México de la influenza AH1N1.

Enlaces:
CEPAL - Comisión Económica para América Latina
7. La gráfica mostrada en el texto es un modelo matemático de los casos de influenza reportados en el país entre el 1 de abril y el 11 de mayo de 2009. La función asociada al problema anterior es la siguiente:

\[
 f(t) = \frac{0.64t - 18.99}{0.00054t^2 - 0.04594t + 1}
\]

donde \(t \) representa los días transcurridos.

8. Con base en el modelo matemático anterior, responde lo siguiente:

a) Obtén la gráfica de la función \(f(t) \).

Respuesta:

\[
 f(t) = \frac{(0.64t - 18.99)}{(0.00054t^2 - 0.04594t + 1)}
\]

b) Obtén la derivada \(f'(t) \).

Si \(f(t) = \frac{u}{v} \), entonces:

\[
 f'(t) = \frac{u'v - uv'}{v^2}
\]

Sea:

\[
 u(t) = 0.64t - 18.99
\]

\[
 v(t) = 0.00054t^2 - 0.04594t + 1
\]

Entonces:

\[
 u'(t) = 0.64
\]

\[
 v'(t) = 0.00108t - 0.04594
\]
Sustituyendo se tiene:

\[f'(t) = \frac{(0.64)(0.00054t^2 - 0.04594t + 1) - (0.64t - 18.99)(0.00108t - 0.04594)}{(0.00054t^2 - 0.04594t + 1)^2} \]

\[f''(t) = -\frac{0.0003456(t - 44.0929)(t - 15.2509)}{(0.00054t^2 - 0.04594t + 1)^2} \]

c) ¿Cuál es la tasa de variación cuando \(t = 32 \) días?

Respuesta:

Sabemos que:

\[f(t) = \frac{0.64t - 18.99}{0.00054t^2 - 0.04594t + 1} \]

Entonces, la tasa de variación para los primeros 32 días está dada por:

\[\frac{f(32) - f(0)}{32 - 0} = \frac{0.64(32) - 18.99}{0.00054(32)^2 - 0.04594(32) + 1} - \frac{0.64(0) - 18.99}{0.00054(0)^2 - 0.04594(0) + 1} \]

\[= 36.96779923 \]

d) Determina la velocidad de crecimiento cuando \(t = 45 \) días.

Respuesta:

\[f'(45) = -\frac{0.0003456(45 - 44.0929)(45 - 15.2509)}{(0.00054(45)^2 - 0.04594(45) + 1)^2} \]

\[f'(45) = -0.355960199 \]

e) ¿En qué momento la tasa de variación tuvo valor cero?

Respuesta:

En \(t = 44.0929 \)

f) ¿A partir de qué valor la velocidad de crecimiento empezó a disminuir?

Respuesta:

En \(t = 40.03 \)
Unidad 2

Segunda Parte

Actividad 1

1. La tasa de crecimiento de la población (TCP) es el aumento de la población de un país en un periodo determinado, generalmente un año, expresado como porcentaje de la población al comenzar el periodo. Refleja el número de nacimientos y muertes ocurridos durante el periodo y el número de inmigrantes y emigrantes del país.

2. En un periodo de varios años.

Si se toman en cuenta las tasas de crecimiento de varios años se ayuda a contrarrestar cualquier acontecimiento poco común y de corto plazo que pudiera dar una idea equivocada de las tendencias del crecimiento de la población. Por ejemplo, una epidemia, una hambruna, o una guerra podrían provocar una disminución considerable de la TCP en un año, pero el cambio no se debería a una modificación a largo plazo del comportamiento de la población y, por lo tanto, no sería tan marcado si se lo considera dentro de un lapso de 10 o 15 años.

3. a) Las tasas de mortalidad han disminuido sobre todo porque la población tiene más acceso a mejores servicios de atención de la salud y a una mejor nutrición. Las tasas de natalidad han disminuido porque los padres tienen más confianza en que sus hijos vivirán hasta llegar a ser adultos; porque más personas tienen acceso a métodos de planificación de la familia, y porque un mayor número de niñas está recibiendo educación básica y decidiendo formar una familia más tarde en la vida y tener menos hijos y más sanos.

b) El ímpetu demográfico se produce cuando una población está formada por un gran número de personas jóvenes que están en edad de procrear. Debido a que su número es tan alto y a que están teniendo hijos, la población de esos países sigue creciendo, aunque se esté reproduciendo al nivel de reemplazo. Por lo tanto, el ímpetu demográfico impide que se sientan plenamente los efectos de una menor TCP durante varias décadas. El aumento de la población impone presiones adicionales sobre los servicios sociales es, la economía y el medio ambiente del país.

c) El aumento de la urbanización puede producir un mayor consumo de los recursos naturales, como los árboles, para obtener madera, y el agua potable; un aumento de la contaminación, que puede afectar la calidad de la atmósfera y el agua y puede tener efectos perjudiciales para la salud, la fauna y flora silvestres, y la vegetación; un "proceso de población", y menos "espacios verdes".
d) Este inciso tiene como objetivo que estés consciente de la serie de situaciones que trae consigo los movimientos migratorios. Por ejemplo, el gobierno de Canadá ha controlado la inmigración permitiendo la entrada de profesionistas o gente que puede trabajar en ámbitos productivos, generando más riqueza para el país. La situación de México es diferente, por un lado sirve de paso para los inmigrantes centroamericanos para llegar a Estados Unidos, mientras que también de México emigran a los Estados Unidos. Son dos condiciones diferentes en cuanto a migración se refiere.

e) Los gobiernos pueden aumentar la educación, especialmente de las niñas; ofrecer mejores servicios de planificación de la familia a un mayor número de personas; proporcionar seguro médico, planes de jubilación y seguridad Sociales; mejorar la atención de la salud y reducir la mortalidad infantil, y aumentar la conciencia de la población acerca de los problemas que experimentan las poblaciones de crecimiento rápido.

f) Pueden tener más conciencia de las opciones sobre planificación de la familia; probablemente hayan aprendido sobre salud, higiene y buena nutrición, de manera que un número mayor de sus hijos sobrevive; y están mejor preparadas para trabajar fuera del hogar y ganar dinero, de modo que tienen más posibilidades de elección en la vida y pueden decidir formar una familia más tarde y tener menos hijos.

4.

País A:	[400.000]	[1.8%]
País B:	[300.000]	[3.5%]
País C:	[10.000.000]	[2.5%]

5. a) 66 millones.
 b) 12 millones.
 c) 102 millones.
 d) Incluso las pequeñas variaciones de las tasas de crecimiento de la población tienen una repercusión considerable en el tamaño de la población mundial.

Actividad 2

Lista de cotejo para evaluar un cuadro sinóptico

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Hecho</th>
<th>No realizado</th>
</tr>
</thead>
<tbody>
<tr>
<td>La información del documento se relaciona con el tópico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiene la información más importante del tópico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existe una relación entre los conceptos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualmente es claro el orden de la información</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establece categorías claras</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Segunda Parte

Actividad 3

a) \(G(x) = 3x^2 \)

b) \(G(x) = \frac{1}{2}x^2 \)

c) \(G(x) = \frac{1}{9}x^3 \)

d) \(G(x) = -\frac{1}{x^2} = -x^{-2} \)

e) \(G(x) = \text{sen} \ x \)

¿Cuál fue la estrategia que se utilizó para encontrar a la función \(G \)?

Respuesta: Establecer una función \(G(x) \) de tal forma que al derivar se obtenga la función dada en cada inciso, es decir, \(\frac{d}{dx}[G(x)] = G'(x) \). Es muy importante considerar las leyes de los exponentes y las principales reglas de derivación (véase la tabla 3 de la sección 1.6).

Actividad 4

1. Si

\[
G(x) = \frac{3}{x^3} + C = 3x^{-3} + C,
\]

entonces

\[
G'(x) = -9x^{-4} = -\frac{9}{x^4} = f(x) - \text{el integrando} - \int (x-2)(x+2)dx = \frac{1}{3}x^3 - 4x + C
\]

2. Si

\[
G(x) = \frac{1}{3}x^3 - 4x + C,
\]

entonces

\[
G'(x) = x^2 - 4 = (x-2)(x+2) = f(x) - \text{el integrando} - .
\]

3. Si

\[
G(x) = \frac{2(x^2 + 3)}{3\sqrt{x}} + C,
\]

Sea \(u = 2(x^2 + 3) \) y \(v = 3\sqrt{x} \),

entonces \(u' = 4x \) y \(v' = \frac{3}{2\sqrt{x}} \),
Ahora bien, por la regla del cociente se tiene

\[G'(x) = \frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v \cdot u' - u \cdot v'}{v^2} \]

\[
G'(x) = \frac{12x\sqrt{x} - 3x^2 - 9}{\sqrt{x}} = \frac{9x^2 - 9}{9x} = \frac{9x^2 - 9}{9x^{\frac{3}{2}}} = f(x) \text{ – el integrando – .}
\]

En los ejercicios 4 a 6 encuentra la solución general de la ecuación diferencial y verifica el resultado por derivación.

4. \(\frac{dy}{dt} = 3t^2 \)

Respuesta: \(y = t^3 + C \), puesto que: \(\frac{dy}{dt} = 3t^2 \)

5. \(\frac{dy}{dx} = \sqrt[3]{x} \)

Respuesta: \(y = \frac{2}{5} x^{\sqrt[3]{x}} + C \), puesto que: \(\frac{dy}{dx} = x^{\sqrt[3]{x}} \)

6. \(\frac{dr}{d\theta} = \pi \)

Respuesta: \(r = \pi \theta + C \), puesto que: \(\frac{dr}{d\theta} = \pi \)

En los ejercicios 7 a 15 encuentra la integral indefinida y verifica el resultado por derivación.

7. \(\int (x+3)dx \)

Respuesta: \(\frac{1}{2} x^2 + 3x + C \), puesto que

\[
\frac{d}{dx} \left(\frac{1}{2} x^2 + 3x + C \right) = (x+3) = f(x) \text{ – el integrando – .}
\]

8. \(\int (2x-3x^2)dx \)

Respuesta: \(x^2 - x^3 + C \)

9. \(\int \frac{1}{x^3} dx \)

Respuesta: \(-\frac{1}{2x^2} + C \)
10. $\int \sqrt[3]{x^2} \, dx$
 Respuesta: $\frac{3}{5} x^{\frac{5}{3}} + C$

11. $\int y^2 \sqrt{y} \, dy$
 Respuesta: $\frac{2}{7} y^{\frac{7}{2}} + C$

12. $\int (\tan^2 x + 1) \, dx$
 Respuesta: $\tan x + C$, puesto que
 $\tan^2 x + 1 = \sec^2 x$ y $\frac{d}{dx} \tan x + C = \sec^2 x$

13. $\int (2 \sin x + 3 \cos x) \, dx$
 Respuesta: $-2 \cos x + 3 \sin x + C$

14. $\int \frac{\cos \theta}{1 - \cos^2 \theta} \, d\theta$
 $\int \frac{\cos \theta}{1 - \cos^2 \theta} \, d\theta = \int \frac{\cos \theta}{\sin^2 \theta} \, d\theta = \int \left(\frac{1}{\sin x} \right) \left(\frac{\cos x}{\sin x} \right) \, dx$
 $= \int \csc x \cot x \, dx = -\csc x + C,$
 puesto que
 $\frac{d}{dx} (-\csc x + C) = \csc x \cot x = f(x)$ el integrando $-$.

15. $\frac{2}{15} x^{\frac{1}{2}} \left(3x^2 + 5x + 15\right) + C,$
 puesto que al multiplicar
 $\frac{2}{15} x^{\frac{1}{2}} \left(3x^2 + 5x + 15\right) = \frac{6}{15} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2x^{\frac{1}{2}}$
 y derivando
 $\frac{d}{dx} \left(\frac{6}{15} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2x^{\frac{1}{2}} \right) = x^{\frac{3}{2}} + x^{\frac{1}{2}} + x^{-\frac{1}{2}} = \frac{x^2 + x + 1}{x^{\frac{1}{2}}}$
 $= f(x)$ el integrando $-$.
Movimiento vertical.

16. El movimiento de la roca con respecto del tiempo se representa por la función distancia

\[d(t) = -4.9t^2 + 1600 \]

Al llegar la roca al suelo se tiene que \(d(t) = 0 \), entonces el tiempo que tarda en chocar contra el suelo del Cañón es:

\[t = \sqrt{\frac{1600}{4.9}} \approx 18.07 \text{s} \]

17. 7.1 metros

18. El movimiento del objeto con respecto del tiempo se representa por la función distancia

\[d(t) = -4.9t^2 + v_0t + 2 \]

Para determinar la velocidad inicial, \(v_0 \), sabemos que el objeto alcanza su altura máxima en 200 metros sobre el nivel del suelo, entonces la velocidad instantánea (derivada) del proyectil en dicha altura máxima es:

\[d'(t) = -9.8t + v_0 = 0, \]

implicando que: \(v_0 = 9.8t \), donde \(t \) representa el tiempo en donde dicho proyectil alcanza su altura máxima. Sustituyendo esta última ecuación en la función distancia para 200 metros, podemos despejar el tiempo donde el proyectil alcanza su altura máxima

\[
200 = -4.9t^2 + v_0t + 2 = -4.9t^2 + 9.8t^2 + 2 \\
0 = 4.9t^2 - 198 \\
\frac{198}{4.9} = t^2 \\
t = 6.35
\]

Por lo tanto, la velocidad inicial del proyectil para que alcance los 200 metros de altura máxima es:

\[v_0 = 9.8t = 9.8(6.35) = 62.23 \text{ m/s} \]

19. **Gravedad lunar.** En la Luna la aceleración debida a la gravedad es de \(-1.6 \text{ m/s}^2\) por segundo al cuadrado. Si se suelta una piedra desde una colina lunar y choca contra la superficie de la Luna 20 segundos más tarde. ¿Qué altura descendió? ¿Qué velocidad tenía cuando se produjo el impacto?
Respuesta:
320 metros, la altura que descendió; –32 metros por segundo, la velocidad de impacto.

20. **Velocidad de escape.** La velocidad mínima requerida para que un objeto escape de la atracción gravitacional de la tierra se obtiene mediante la ecuación

\[\int v \, dv = -GM \int \frac{1}{y^2} \, dy \]

donde \(v \) es la velocidad del objeto proyectado desde la Tierra, \(y \) es la distancia respecto al centro de la Tierra, \(G \) es la constante gravitacional universal y \(M \) es la masa de la Tierra. Demuestra que \(v \) y \(y \) se relacionan por la ecuación

\[v^2 = v_0^2 + 2GM \left(\frac{1}{y} - \frac{1}{R} \right) \]

donde \(v_0 \) es la velocidad inicial del objeto y \(R \) es el radio de la Tierra.

Observación: Cabe señalar que algunos libros de texto utilizan \(gR^2 \) en lugar de \(GM \), donde \(g \) sabemos representa la fuerza de gravedad en la Tierra. A partir de los siguientes datos se puede verificar que \(GM = gR^2 \).

\(G = 6.67 \times 10^{-11} \frac{N \cdot m^2}{kg^2} \) (Constante de gravitación universal, donde \(N = Newton \))

\(M = 5.97 \times 10^{24} \) kg (Masa de la Tierra)

\(R = 6,374.366 \) km = 6,374,366 m (Radio medio de la Tierra)

\(g = 9.8 \frac{m}{s^2} \) (Fuerza de gravedad en la Tierra)

Para mayor información se recomienda revisar el siguiente enlace: http://www.sc.ehu.es/sbweb/fisica/celeste/constante/constante.htm

Respuesta:
Al integrar:

\[\int v \, dv = -GM \int \frac{1}{y^2} \, dy \]

Se obtiene

\[\frac{1}{2} v^2 + C_1 = -2GM \left(-\frac{1}{y} \right) + C_2 \]

implicando

\[v^2 = 2GM \left(\frac{1}{y} \right) + C \]
donde C es una constante arbitraria. Ahora bien, para determinar la constante C, hacemos la velocidad inicial, $v(0) = v_0$, es decir,

$$v_0 = 2GM\left(\frac{1}{R}\right) + C$$

donde R es el Radio medio de la Tierra. Entonces

$$C = v_0^2 - 2GM\left(\frac{1}{R}\right)$$

Por lo tanto

$$v^2 = 2GM\left(\frac{1}{y}\right) + v_0^2 - 2GM\left(\frac{1}{R}\right)$$

es decir,

$$v^2 = v_0^2 + 2GM\left(\frac{1}{y} - \frac{1}{R}\right)$$

Lo que queríamos demostrar.

Actividad 5

1. La región que se muestra en la figura a la derecha (véase figura 10 de la Sección 2.3) está limitada arriba por la gráfica de la función $f(x) = -2\sqrt{3} + \sqrt{16 - (x - 2)^2}$ y abajo por el eje x. Tu tarea es describir diferentes formas en las que podrías hacer una aproximación del área de la región. Después elije una de las formas y úsala para obtener una aproximación del área. ¿Qué clase de exactitud crees que tiene tu aproximación?

Respuesta:

Primera aproximación del área de la región: Utilizamos 4 rectángulos de base igual a 1 unidad y cuya altura se determina por los extremos izquierdos de cada rectángulo. Entonces el área aproximada es: $A = 1.35$
Segunda aproximación del área de la región: Utilizamos 8 rectángulos de base igual a 0.5 de unidad y cuya altura se determina por los extremos de la derecha de cada rectángulo. Entonces el área aproximada es: \(A = 1.43 \)

![8 rectángulos - extremos derecha](image)

Tercera aproximación del área de la región: Utilizamos 16 rectángulos de base igual a 0.25 de unidad y cuya altura se determina por los extremos izquierdos de cada rectángulo. Entonces el área aproximada es: \(A = 1.44 \)

![16 rectángulos - extremos izquierda](image)

2. Ahora que encontraste una aproximación para el área de la región, describe una forma para mejorarla. ¿Te permite tu estrategia elegida obtener una aproximación que sea arbitrariamente cercana al área real? Explica por qué.

Respuesta:

Al aumentar el número de rectángulos (reducir la base de cada uno), la suma de las áreas de los rectángulos se aproxima cada vez más al área debajo de la función \(f(x) \), esto sucede independientemente del utilizar extremos izquierdos o derechos de cada rectángulo al determinar la altura.
3. Usa tu aproximación para estimar el área del triángulo abultado que se muestra en la figura 10 en la parte de la izquierda (véase la figura 10 de la Sección 2.3).

Respuesta:

\[A = 3A_1 + A_2 \]

Donde:

- \(A_1 \) es la aproximación de la región comprendida entre \(f(x) \) y el eje “X” al utilizar 16 rectángulos, cada uno de ellos con base igual a 0.25 de unidad y cuya altura se determina por los extremos izquierdos de cada rectángulo.
- \(A_2 \) es el área del triángulo equilátero con lado igual a 4 unidades.

\[A = 3A_1 + A_2 = 3(1.44) + 2\sqrt{12} \approx 4.32 + 6.92 = 11.24 \]

Entonces, el área buscada es:

Actividad 6

Utiliza el área de los polígonos circunscritos, \(Q(n) \), planteado en la Sección 2.3.1, para demostrar que el área del círculo de radio \(r \) es \(\pi r^2 \), es decir, prueba que:

\[\lim_{n \to \infty} Q(n) = \pi r^2, \]

donde \(Q(n) = n r^2 \tan(180 \frac{1}{n}) \)

Respuesta:

Probar que:

\[\pi r^2 = A = \lim_{n \to \infty} Q(n) \]

Entonces, para el caso de polígonos circunscritos se tiene que:

\[A = \lim_{n \to \infty} \left(n r^2 \tan \left(\frac{\pi}{n} \right) \right) \]

multiplicando y dividiendo por la misma cantidad, \(\left(\frac{\pi}{n} \right) \), y sabiendo que:

\[\tan(x) = \frac{\text{sen}(x)}{\cos(x)}, \lim_{x \to 0} \left(\frac{\text{sen}(x)}{x} \right) = 1, \text{ y que el } \cos(0) = 1, \text{ obtenemos:} \]

\[A = \lim_{n \to \infty} \left(\frac{\pi}{n} \right) n r^2 \tan \left(\frac{\pi}{n} \right) \]

\[= \lim_{n \to \infty} \left(\frac{\pi}{n} \right) n r^2 \frac{\text{sen} \left(\frac{\pi}{n} \right)}{\cos \left(\frac{\pi}{n} \right) \frac{\pi}{n}} \]

\[= \pi r^2 \]

por lo que el área exacta del círculo de radio \(r \) es:

\[A = \pi r^2 \]
Actividad 7
1. La rapidez con la que cambia la temperatura disminuye.
2. La curva continúa en descenso (función decreciente) y conforme aumenta el tiempo la curva tiende a la recta \(T = 21^\circ C \).
3. La derivada crece (aumenta) conforme aumentan los valores del tiempo \(t \).
4. \(a = 54, \ b = 0.96 = \frac{24}{25}, \ c = 21 \)
 Es decir:
 \[
 T = 54(0.96)^t + 21.
 \]

Actividad 8
1. ¿Es verdadero lo inverso del teorema 2.2? Es decir, si una función es integrable, ¿tiene que ser continua? Explica tu razonamiento y brinda algunos ejemplos.
 Respuesta:
 Es falso que una función integrable sea necesariamente continua. Por ejemplo la función \(f \) que es igual a 1 en el intervalo \([0, 1]\) y 2 en el intervalo \([1, 2]\). Está claro que la función no es continua, pero sí es Riemann integrable.

2. Describe la relación entre continuidad, diferenciación e integrabilidad. ¿Cuál es la condición más necesaria? ¿Cuál la menos?
 La integrabilidad es la condición más necesaria, mientras que la menos necesaria es la diferenciabilidad.

3. ¿Cuáles condiciones comprenden a otras condiciones?
 Dado que las funciones diferenciables son continuas, este resultado implica que:
 \[
 \{ \text{Funciones diferenciables} \} \subset \{ \text{funciones continuas} \} \subset \{ \text{funciones integrables} \}
 \]
 Por ejemplo la función \(f(x) = |x| \) (valor absoluto de \(x \)), en el intervalo \([-1, 1]\) es una función integrable por ser continua en todos sus puntos y no es diferenciable en \(x = 0 \).
Actividad 9

1. Determina las sumas \(S(n) \) y \(\overline{S(n)} \) de la región acotada por la gráfica de \(f(x) = x^2 \) y el eje \(x \) entre \(x = 0 \) y \(x = 2 \).

Respuesta: La suma de los \(n \) rectángulos es denotada con \(S(n) \) y \(\overline{S(n)} \) llamadas también suma por la izquierda y suma por la derecha respectivamente son:

\[
S(n) = \Delta x \left(\sum_{i=1}^{n} f(x_{i-1}) \right), \quad \overline{S(n)} = \Delta x \left(\sum_{i=1}^{n} f(x_{i}) \right).
\]

Ahora bien, lo primero es definir \(\Delta x \) como la longitud de cada uno de los \(n \) subintervalos de la partición del intervalo \([0, 2]\), es decir,

\[
\Delta x_{i} = \Delta x = \frac{b-a}{n} = \frac{2-0}{n} = \frac{2}{n}.
\]

Suma por la izquierda.

Al seleccionar \(x_{i-1} \) como el punto extremo izquierdo de cada intervalo obtenemos

\[
f(x_{i}) = (a + (i-1)\Delta x)^2 = \left(\frac{2(i-1)}{n} \right)^2 \]

De esta forma, la suma por la izquierda está dada por

\[
S(n) = \Delta x \left(\sum_{i=1}^{n} \frac{2(i-1)}{n} \right)^2 = \frac{2}{n} \left(\sum_{i=1}^{n} \frac{2(i-1)}{n} \right)^2.
\]

\[
= \left(\frac{2}{n} \right) \left(\frac{4}{n^2} \left(\sum_{i=1}^{n} (i-1)^2 \right) \right) = \frac{8}{n^3} \left(\sum_{i=1}^{n} i^2 - 2i + 1 \right)
\]

\[
= \frac{8}{n^3} \left(\frac{n(n+1)(2n+1)}{6} - 2 \left(\frac{n+1}{2} \right)^2 + n \right)
\]

\[
= \frac{8}{n^3} \left(\frac{2n^3 + 3n^2 + n}{6} - 1 \right) = \frac{8}{n^3} \left(\frac{2n^3 + 3n^2 + n}{6} - \frac{6}{6} \right)
\]

\[
S(n) = \frac{8}{6} \left(\frac{2n^3 + 3n^2 + n}{n^3} - \frac{6}{n^3} \right) = \frac{8}{6} \left(\frac{2n^3 + 3n^2 + n}{n^3} - 6 \right).
\]

Suma por la derecha.

Al seleccionar \(x_{i} \) como el punto extremo derecho de cada intervalo obtenemos
De esta forma, la suma por la izquierda está dada por

\[
S(n) = \Delta x \left[\sum_{i=1}^{n} f(x_i) \right] = \left(\frac{2}{n} \right) \left[\sum_{i=1}^{n} \left(\frac{2i}{n} \right)^2 \right]
\]

\[
= \left(\frac{2}{n} \right) \left[\frac{4}{n^2} \frac{n(n+1)(2n+1)}{6} \right]
\]

\[
= \frac{8}{6} \left\{ \frac{2n^3 + 3n^2 + n}{n^3} \right\}.
\]

2. Encuentra el área de la región acotada por la gráfica de \(f(x) = x^3 \), el eje \(x \) y las rectas verticales \(x = 0 \) y \(x = 1 \). Realiza la gráfica de la región acotada.

Respuesta:

\[
\text{Área} = \int_{a}^{b} f(x) \, dx = \int_{0}^{1} x^3 \, dx = \lim_{\Delta \to 0} \left[\sum_{i} f(x_i) \Delta x_i \right] = \lim_{n \to \infty} \left[\sum_{i=1}^{n} f(x_i) \Delta x \right]
\]

Área = \(\frac{1}{4} \) unidades cuadradas.

3. Encuentra el área de la región acotada por la gráfica de \(f(x) = 4 - x^2 \), el eje \(x \) y las rectas verticales \(x = 1 \) y \(x = 2 \). Realiza la gráfica de la región acotada.

Respuesta:

\[
\text{Área} = \int_{a}^{b} f(x) \, dx = \int_{1}^{2} (4 - x^2) \, dx = \lim_{\Delta \to 0} \left[\sum_{i} f(x_i) \Delta x_i \right] = \lim_{n \to \infty} \left[\sum_{i=1}^{n} f(x_i) \Delta x \right]
\]

Área = \(\frac{5}{3} \) unidades cuadradas.
4. Considere las siguientes funciones:

\[f(x) = 2x + 5, \quad g(x) = (x+1)^2, \quad h(x) = x^3 + 2 \]

a) Aproxima la área debajo de las funciones dadas, desde \(x = -1 \) hasta \(x = 2 \), usando tres rectángulos considerando los puntos extremos de la derecha. En seguida, mejora tu aproximación utilizando seis rectángulos. Dibuja las gráficas de las funciones y los rectángulos de aproximación.

Respuesta:
Aproximación del área debajo de la función \(g(x) = (x+1)^2 \) en el intervalo \([-1, 2]\), usando tres rectángulos y considerando los puntos extremos de la derecha.

Aproximación del área debajo de la función \(g(x) = (x+1)^2 \) en el intervalo \([-1, 2]\), usando seis rectángulos y considerando los puntos extremos de la derecha.

Aproximación del área debajo de la función \(h(x) = x^3 + 2 \) en el intervalo \([-1, 2]\), usando tres rectángulos y considerando los puntos extremos de la derecha.

Aproximación del área debajo de la función \(h(x) = x^3 + 2 \) en el intervalo \([-1, 2]\), usando seis rectángulos y considerando los puntos extremos de la derecha.
Apéndice 1

b) Repite el inciso a), con los puntos extremos de la izquierda.
Respuesta:

Aproximación del área debajo de la función \(f(x) = 2x + 5 \) en el intervalo \([-1, 2]\), usando tres rectángulos y considerando los puntos extremos de la izquierda.

Aproximación del área debajo de la función \(f(x) = 2x + 5 \) en el intervalo \([-1, 2]\), usando seis rectángulos y considerando los puntos extremos de la izquierda.

Aproximación del área debajo de la función \(g(x) = (x+1)^2 \) en el intervalo \([-1, 2]\), usando tres rectángulos y considerando los puntos extremos de la izquierda.

Aproximación del área debajo de la función \(g(x) = (x+1)^2 \) en el intervalo \([-1, 2]\), usando seis rectángulos y considerando los puntos extremos de la izquierda.
Apéndice 1

Aproximación del área debajo de la función $h(x) = x^3 + 2$ en el intervalo $[-1, 2]$, usando tres rectángulos y considerando los puntos extremos de la izquierda.

Aproximación del área debajo de la función $h(x) = x^3 + 2$ en el intervalo $[-1, 2]$, usando seis rectángulos y considerando los puntos extremos de la izquierda.

c) Dividiendo el intervalo $[-1, 2]$ en n subintervalos iguales y construyendo rectángulos (considerando los puntos extremos de la derecha y de base $(3/n)$), encuentra el valor del área exacta debajo de las funciones f, g y h dadas, aplicando el límite cuando n tiende a infinito. Recuerda que:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

5. Utiliza la siguiente rúbrica para evaluar tu resumen.

Rubrica para evaluar resúmenes

<table>
<thead>
<tr>
<th>Aspecto a evaluar</th>
<th>Excelente</th>
<th>Suficiente</th>
<th>No suficiente</th>
<th>Deficiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idea principal y secundarias 20%</td>
<td>Señala claramente la idea central del tema y subordina a este las ideas secundarias. 20%</td>
<td>Señala la idea central pero no toma en cuenta las ideas secundarias. 15%</td>
<td>Falta claridad al señalar la idea principal, destacando más las ideas secundarias del texto. 10%</td>
<td>No señala la idea central Hay confusión al describir las ideas secundarias. 5%</td>
</tr>
</tbody>
</table>

(Continúa...)
Apéndice 1

En este ejemplo se tomaron en cuenta 4 aspectos de desempeños a evaluar. Cuando se presenta uno de los indicadores se le asigna el porcentaje adjunto. De esta manera puedes obtener un total máximo de 100%. El resultado del desempeño se obtiene en porcentaje. En este caso se decidió presentar cuatro niveles de desempeño (excelente, suficiente, no suficiente y deficiente).

<table>
<thead>
<tr>
<th>Aspecto a evaluar</th>
<th>Excelente</th>
<th>Suficiente</th>
<th>No suficiente</th>
<th>Deficiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprensión del tema (50%)</td>
<td>Respeta la estructura y organización del texto base (inicio, desarrollo y final). Se expresa con sus propias palabras o puede ligar las frases que usa el autor de manera adecuada. Elimina material innecesario, secundario o redundante. 50%</td>
<td>Respeta la organización del escrito. Liga frases del autor original del texto a frases elaboradas por el alumno adecuadamente, aunque redunda sobre comentarios previos. 45%</td>
<td>No toma en cuenta la organización del escrito, prevalecen las frases de los autores sobre los comentarios propios. Si elimina material innecesario o redundante. 30%</td>
<td>No respeta la organización del escrito. Lo expresado es un clásico “corta y pega” sin coherencia. Prevalece el material innecesario y secundario sobre el adecuado y principal. 20%</td>
</tr>
<tr>
<td>Estilo, gramática y ortografía. (10%)</td>
<td>Sin errores ortográficos o gramaticales, texto justificado, un solo tipo y tamaño de letra, color de la fuente sin contrastes marcados. 10%</td>
<td>Errores ortográficos o gramaticales mínimos (menos de 5), texto justificado, un solo tipo y tamaño de letra, visualmente agradable. 7.5%</td>
<td>Errores ortográficos y gramaticales (menos de 10), texto justificado, un solo tipo, tamaño y color de letra. 5%</td>
<td>Errores ortográficos y gramaticales múltiples (más de diez). Texto sin justificación, mezcla diferentes tipos y tamaños de letra. Colores visualmente desagradables. 2.5%</td>
</tr>
<tr>
<td>Redacción. (20%)</td>
<td>Utiliza frases breves. Evita coloquialismos y palabras vulgares, si las usa las “entrecomillas”. Repite la idea del autor con otras palabras. Si cita el texto lo hace de manera breve y con “comillas”. Sigue el orden propuesto y marca adecuadamente cada una de las partes. 20%</td>
<td>Utiliza frases breves. Usa algunos coloquialismos pero no palabras vulgares, y no los “entrecomillas”. Repite la idea del autor con otras palabras. Cita el texto de manera amplia y con “comillas”. Sigue el orden propuesto y marca adecuadamente cada una de las partes. 15%</td>
<td>Utiliza frases extensas. Usa coloquialismos pero no palabras vulgares, y no los “entrecomillas”. Repite la idea del autor de manera textual, aunque con “comillas”. Sigue el orden propuesto pero no marca adecuadamente cada una de las partes. 10%</td>
<td>Utiliza frases muy extensas. Usa coloquialismos y palabras vulgares sin “comillas”. Repite la idea del autor de manera textual sin “comillas”. No sigue el orden propuesto ni marca adecuadamente cada una de las partes. 5%</td>
</tr>
</tbody>
</table>

Autores: Alonso-Gastelum N; Chávez-González C; Castillejos-Anleu B; Torres-Barrera B; Pavía-Carrillo E.

http://www.e-itesca.edu.mx/RubricasITESCAVIRTUAL/resumen.html
Actividad 10

¿Ciento o falso? En los ejercicios siguientes determina si la afirmación es cierta o falsa. En caso de que sea falsa, explica por qué o bien ofrece un ejemplo que justifique que es falsa.

1. \(\int_a^b [f(x) - g(x)] \, dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx \)

 Respuesta: Verdadero

2. \(\int_a^b [f(x)g(x)] \, dx = \left[\int_a^b f(x) \, dx \right] \left[\int_a^b g(x) \, dx \right] \)

 Respuesta: Falso.

 \[
 \int_0^1 [x \ x^2] \, dx \neq \left[\int_0^1 x \, dx \right] \left[\int_0^1 x^2 \, dx \right] = \frac{1}{4} \neq \left(\frac{1}{2} \right) \left(\frac{1}{3} \right)
 \]

3. Si la norma de una partición se aproxima a cero, entonces el número de subintervalos se aproxima a infinito.

 Respuesta: Verdadero

4. Si la función \(f \) aumenta sobre el intervalo \([a, b]\), entonces el valor mínimo de \(f(x) \) en \([a, b]\) es \(f(a) \).

 Respuesta: Verdadero

5. El valor de \(\int_a^b f(x) \, dx \) debe ser positivo.

 Respuesta: Falso.

 \[
 \int_a^b f(x) \, dx = \int_0^1 x^3 \, dx = -\frac{1}{4} < 0.
 \]

6. Si \(\int_a^b f(x) \, dx > 0 \), entonces la función \(f \) es no negativa para todas las \(x \) en \([a, b]\).

 Respuesta: Falso.

 \[
 \int_a^b f(x) \, dx = \int_{-1}^2 (x^3 - 1) \, dx = \frac{3}{4} > 0;
 \]

 y la función \(f(x) = x^3 - 1 \) es negativa para toda \(x < 1 \).
Actividad 11

Rúbrica para evaluar un ensayo

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Deficiente (1)</th>
<th>Satisfactorio (2)</th>
<th>Excelente (3)</th>
<th>Puntuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estructura y argumentación</td>
<td>Solamente contiene el desarrollo del tópico. No proporciona su opinión sobre el tópico.</td>
<td>Carece de alguno de los siguientes: introducción desarrollo o cierre. En algunos casos comparte su opinión sobre el tópico.</td>
<td>El texto cuenta con introducción, desarrollo y cierre. Proporciona sus puntos de vista y los argumenta correctamente.</td>
<td></td>
</tr>
<tr>
<td>Información</td>
<td>La información contenida es insuficiente o nula.</td>
<td>Falta información importante sobre el tópico.</td>
<td>Incluye la información necesaria para comprender el tópico abordado</td>
<td></td>
</tr>
<tr>
<td>Coherencia</td>
<td>La relación de las ideas expresadas en el escrito no es clara, es difícil entender lo que pretende el autor.</td>
<td>La relación de las ideas se expresa en algunos casos, mientras que en otros es complicado establecer la forma en la cual se vinculan.</td>
<td>Describe los elementos que aborda en el escrito de manera ordenada y lógica, lo cual permite en todo momento la comprensión de ideas y de hechos.</td>
<td></td>
</tr>
<tr>
<td>Gramática y ortografía</td>
<td>Comete más de 5 errores de gramática u ortografía que distraen al lector del contenido.</td>
<td>Comete entre 4 y 5 errores de gramática u ortografía.</td>
<td>No comete errores de gramática y ortografía.</td>
<td></td>
</tr>
<tr>
<td>Fuentes consultadas</td>
<td>Las fuentes empleadas provienen de publicaciones no arbitradas o carecen de respaldo institucional.</td>
<td>La mayoría de las fuentes provienen de publicaciones arbitradas o de instituciones que las respaldan.</td>
<td>Todas las fuentes utilizadas provienen de publicadas arbitradas o de instituciones que las respalden.</td>
<td></td>
</tr>
<tr>
<td>Conclusiones</td>
<td>No se encuentra una reflexión final sobre el tópico abordado</td>
<td>Concluye dando un argumento correspondiente al desarrollo del tópico.</td>
<td>Hace una reflexión y argumenta de manera correcta sus conclusiones, asimismo propone nuevas preguntas.</td>
<td></td>
</tr>
</tbody>
</table>

Actividad 12

1. Explica que se quiere decir con la proposición “la derivación y la integración son operaciones o transformaciones inversas”.
 Sugerencia: Teorema Fundamental del Cálculo.

2. Sea \(G(x) = \int_{-3}^{x} f(t) \, dt \), donde \(f \) es la función cuya representación se ilustra en el gráfico 3 de la Sección 2.4.
Apéndice 1

Gráfico 3 Representación gráfica de la función $f(t)$ en el intervalo $[-3, 4]$.

a) Evalúe $G(-3), G(-2), G(-1), G(0), G(1), G(2), G(3)$ y $G(4)$.

Respuesta:
$G(-3) = 0, G(-2) = 1, G(-1) = 2.5, G(0) = 3.5, G(1) = 3, G(2) = 1.5, G(3) = 0.5$ y $G(4) = 1.5$

b) ¿Sobre cuáles intervalos la función G es creciente?

Respuesta:

c) ¿Dónde tiene la función G un valor máximo?

Respuesta:
En $x = 0$.

d) Dibuje una gráfica aproximada de la función G.

Respuesta:
3. En los gráficos 4 y 5 que se muestran a continuación, se considera la gráfica de la función \(f(t) \) definida en los respectivos intervalos. Determina para cada gráfico, utilizando el Teorema Fundamental del Cálculo, la función \(G(x) = \int_a^x f(t) \, dt \), realiza su gráfica y verifica que \(G \) es una función continua en el intervalo definido en cada gráfico.

![Gráfico 4](image1)

![Gráfico 5](image2)

Respuesta:

![Representación gráfica de la función \(G(x) \) en el intervalo \([-3, 4]\).](image3)

![Representación gráfica de la función \(G(x) \) en el intervalo \([-2, 3]\).](image4)

4. Para cada uno de los siguientes incisos, realiza un esquema del área representada por \(G(x) \). Después, encuentra \(G'(x) \) de dos maneras: la primera es aplicando el teorema fundamental del cálculo (TFC) y la segunda es evaluando la integral con la aplicación del Corolario del TFC y, después, derivando.

a) \(G(x) = \int_0^x (1+t)^2 \, dt \)
Respuesta:

Representación gráfica de la función $G(x)$ en el intervalo $[0, x]$ con $x > 0$.

Para $G(x) = \int_{0}^{x} (1+t)^2 \, dt$, aplicamos el TFC, $G'(x_0) = (1+x_0)^2$, para todo $x_0 \in [0, x]$, lo cual lo escribiremos genéricamente como $G'(x) = (1+x)^2$, es decir este teorema nos da información sobre la derivada de la función que buscamos, en este caso sabemos que $\frac{(1+x)^3}{3}$ es una función cuya derivada es $(1+x)^2$, pero en general la derivada no se altera si le sumamos una constante arbitraria, lo cual nos lleva a que $G(x) = \frac{(1+x)^3}{3} + C$ es la antiderivada general. En general de manera esquemática diremos que:

$$G'(x) = (1+x)^2 \quad \Rightarrow \quad G(x) = \frac{(1+x)^3}{3} + C.$$

lo cual salvo la constante C por determinar, nos da una expresión más operativa para $G(x)$.

Aplicando el Corolario del TFC se tiene que

$$G(x) = \int_{0}^{x} (1+t)^2 \, dt = g(x) - g(0)$$

Sólo hay que encontrar una función g que satisfaga $g'(x) = (1+x)^2$ y una de tales funciones es

$$g(x) = \frac{(1+x)^3}{3}$$

y en consecuencia

$$G(x) = \int_{0}^{x} (1+t)^2 \, dt = g(x) - g(0) = \frac{(1+x)^3}{3} - \frac{(1+0)^3}{3} = \frac{(1+x)^3}{3} - \frac{1}{3}$$

$$G(x) = \frac{(1+x)^3}{3} - \frac{1}{3}$$
Por lo tanto:

\[G'(x) = (1+x)^2 \]

\[G(x) = \int_{x}^{\pi} [2+\cos(t)] \, dt \]

Respuesta:

Representación gráfica de la función \(G(x) \) en el intervalo \([\pi, x]\) con \(x > \pi \).

¿Ciento o falso? En los ejercicios 5-7 determina si la afirmación es cierta o falsa. En caso de que sea falsa, explica por qué o bien brinda un ejemplo que muestre que es falsa.

5. Si \(F'(x) = G'(x) \) sobre el intervalo cerrado \([a, b]\), entonces \(F(b) - F(a) = \pm G(b) - G(a) \).

Respuesta: Verdadero

6. Si la función \(f \) es continua sobre \([a, b]\), entonces \(f \) es integrable sobre \([a, b]\).

Respuesta: Verdadero

7. \[\int_{-1}^{1} x^{-2} \, dx = \left[-\frac{1}{x}\right]_{-1}^{1} = (-1) - (-1) = -2. \]

Respuesta: Falso. La función \(f(x) = x^{-2} \) tiene una discontinuidad no eliminable en \(x = 0 \).

Movimiento rectilíneo. En los ejercicios 8-10 considera una partícula que se desplaza a lo largo del eje \(x \), donde \(x(t) \) es la posición (función distancia) de la partícula en el tiempo \(t \), \(x'(t) \) es la velocidad y \(\int_{a}^{b} |x'(t)| \, dt \) es la distancia que la partícula viaja en el intervalo de tiempo definido.
8. La función distancia (de posición) es

\[x(t) = t^3 - 6t^2 + 9t - 2, \quad 0 \leq t \leq 5. \]

Encuentra la distancia total que viaja la partícula en 5 unidades de tiempo.

Respuesta:

\[
\int_a^b |x'(t)| \, dt = \int_0^5 |3t^2 - 12t + 9| \, dt = 28 \text{ unidades}
\]

9. Repite el ejercicio 8 para la función distancia dada por

\[x(t) = (t - 1)(t - 3)^2, \quad 0 \leq t \leq 5. \]

Respuesta:

\[
\int_a^b |x'(t)| \, dt = \int_0^5 \left|2(t-1)(t-3) + (t-3)^2\right| \, dt = 27.37 \text{ unidades}
\]
10. Una partícula se desplaza a lo largo del eje x con velocidad $v(t) = \frac{1}{\sqrt{t}}$, $t > 0$.

En el tiempo $t = 1$, su posición es $x = 4$. Encuentra la distancia total recorrida por la partícula en el intervalo $1 \leq t \leq 4$.

Respuesta:

$$
\left| v(t) \right| dt = \int_{1}^{4} \frac{1}{\sqrt{t}} dt = 2 \text{ unidades}
$$
El siguiente ejercicio representa una demostración práctica del teorema fundamental del cálculo utilizando tecnología.

11. Utiliza un dispositivo graficador para realizar la gráfica de la función $y_1 = \sin^2(t)$ sobre el intervalo $0 \leq t \leq \pi$. Sea $F(x)$ la siguiente función de x

$$F(x) = \int_0^x \sin^2(t) \, dt$$

a) Completa la tabla y explica por qué los valores de F van en aumento.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>$\pi/6$</th>
<th>$\pi/3$</th>
<th>$\pi/2$</th>
<th>$2\pi/3$</th>
<th>$5\pi/6$</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(x)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Utiliza las capacidades de integración de un dispositivo graficador para graficar la función $F(x)$.

c) Utiliza las capacidades de diferenciación de un dispositivo graficador para graficar $F'(x)$. ¿Cómo se relaciona esta gráfica con la obtenida en el inciso b)?

d) Verifica que la derivada de $y(t) = \frac{1}{2}t - \frac{\sin(2t)}{4}$ es $\sin^2(t)$. Realiza la gráfica de la función $y(t)$, y escribe un párrafo breve sobre cómo se relaciona esta gráfica con la realizada en los incisos b) y c).

Respuesta:

Actividad 13
Reconocimiento de patrones. El integrando de cada una de las siguientes integrales se ajusta al patrón $f(g(x))g'(x)$. Identifica el patrón y aplica el resultado para evaluar cada integral.
Apéndice 1

a) \[\int 2x(x^2 + 1)^4 \, dx \]
b) \[\int 3x^2 \sqrt{x^3 + 1} \, dx \]
c) \[\int \sec^2(x)(\tan(x) + 3) \, dx. \]

Respuesta:

a)
\[\int 2x(x^2 + 1)^4 \, dx = \int f(g(x)) \, g'(x) \, dx = F(g(x)) + C \]

Sea \(u = g(x) = x^2 + 1 \), entonces \(du = g'(x) \, dx = 2x \, dx \)

\[\int f(u) \, du = \int u^4 \, du = \frac{u^5}{5} + C = \frac{(x^2 + 1)^5}{5} + C \]

b)
\[\int 3x^2 \sqrt{x^3 + 1} \, dx = \int f(g(x)) \, g'(x) \, dx = F(g(x)) + C \]

Sea \(u = g(x) = x^3 + 1 \), entonces \(du = g'(x) \, dx = 3x^2 \, dx \)

\[\int f(u) \, du = \int u^{3/2} \, du = \frac{2u^{3/2}}{3} + C = \frac{2\sqrt{(x^3 + 1)^3}}{3} + C \]

c)
\[\int \sec^2(x)(\tan(x) + 3) \, dx = \int f(g(x)) \, g'(x) \, dx = F(g(x)) + C \]

Sea \(u = g(x) = \tan(x) + 3 \), entonces \(du = g'(x) \, dx = \sec^2(x) \, dx \)

\[\int f(u) \, du = \int u \, du = \frac{u^2}{2} + C = \frac{(\tan(x) + 3)^2}{2} + C \]

Las siguientes tres integrales son similares a las tres anteriores. El objetivo entonces, es mostrar cómo se puede multiplicar por y dividir entre una constante para evaluar este tipo de integrales.

d) \[\int x(x^2 + 1)^3 \, dx \]
e) \[\int x^2 \sqrt{x^3 + 1} \, dx \]
f) \[\int 2\sec^2(x)(\tan(x) + 3) \, dx. \]

Respuesta:

d)
\[\int x(x^2 + 1)^3 \, dx \]

Sea \(u = g(x) = x^2 + 1 \), entonces \(du = g'(x) \, dx = 2x \, dx \)

\[\int x(x^2 + 1)^3 \, dx = \int u^3 \, du = \frac{1}{2} \int u^4 \, du = \frac{1}{2} \left(\frac{u^5}{5} \right) + C = \frac{(x^2 + 1)^5}{10} + C \]
e)

\[\int x^2 \sqrt{x^3+1} \, dx \]

Sea \(u = g(x) = x^3 + 1 \), entonces \(du = g'(x) \, dx = 3x^2 \, dx \) \(\frac{du}{3} = x^2 \, dx \)

\[\int x^2 \sqrt{x^3+1} \, dx = \frac{1}{3} \int u^{\frac{1}{2}} \, du = \frac{1}{3} \left(\frac{2u^{\frac{3}{2}}}{3} \right) + C = \frac{2}{9} (x^3+1)^{\frac{3}{2}} + C \]

f)

\[\int 2 \sec^2(x)(\tan(x)+3) \, dx \]

Sea \(u = g(x) = \tan(x) + 3 \), entonces \(du = g'(x) \, dx = \sec^2(x) \, dx \) \(2du = 2 \sec^2(x) \, dx \).

Por lo tanto:

\[\int 2 \sec^2(x)(\tan(x)+3) \, dx = 2 \int u \, du = 2 \left(\frac{u^2}{2} \right) + C = (\tan(x)+3)^2 + C \]

Actividad 14

1. a)

\[\int \sqrt{x^4+2} \, dx \quad \text{o} \quad \int x^3 + \sqrt{x^4+2} \, dx \]

Respuesta:

\[\int x^3 \sqrt{x^4+2} \, dx \]

Sea \(u = g(x) = x^4 + 2 \), entonces \(du = g'(x) \, dx = 4x^3 \, dx \) implicando que \(\frac{du}{4} = x^3 \, dx \).

Por lo tanto:

\[\int x^3 \sqrt{x^4+2} \, dx = \frac{1}{4} \int u^{\frac{1}{2}} \, du = \frac{1}{4} \left(\frac{2u^{\frac{3}{2}}}{3} \right) + C = \frac{\sqrt{(x^4+2)^3}}{6} + C \]

b)

\[\int \tan(2x) \, dx \quad \text{o} \quad \int \tan(2x) \sec^2(x) \, dx \]
Respuesta:

$$\int \tan(2x) \sec^2(x) \, dx$$

Sea \(u = g(x) = \tan(2x) \), entonces \(du = g'(x) \, dx = 2 \sec^2(x) \, dx \) implicando que

$$\frac{du}{2} = \sec^2(x) \, dx.$$

Por lo tanto:

$$\int \tan(2x) \sec^2(x) \, dx = \frac{1}{2} \int u \, du = \frac{1}{2} \left(\frac{u^2}{2} \right) + C = \frac{\tan^2(2x)}{4} + C$$

Actividad 15

¿Cierto o falso? En los ejercicios 1-3 averigua si el enunciado es verdadero o falso. Si es falso explica por qué o propón un ejemplo que demuestre su falsedad (contraejemplo).

1. Si el área de la región limitada por las gráficas de \(f \) y \(g \) es 1, entonces el área de la región limitada por las gráficas de \(h(x) = f(x) + C \) y \(k(x) = g(x) + C \) también es 1.

 Respuesta:
 Verdadero

2. Si

 $$\int_a^b [f(x) - g(x)] \, dx = A,$$

 entonces

 $$\int_a^b [g(x) - f(x)] \, dx = -A.$$

 Respuesta:
 Verdadero

3. Si las gráficas de \(f \) y \(g \) se cruzan a medio camino entre \(x = a \) y \(x = b \), entonces

 $$\int_a^b [f(x) - g(x)] \, dx = 0.$$

 Respuesta:
 Falso. Sea \(f(x) = x \) y \(g(x) = 2x - x^2 \) sobre el intervalo \([0, 2]\).

246
Si las gráficas de \(f \) y \(g \) se cruzan a medio camino entre \(x = a \) y \(x = b \), entonces

\[
\int_a^b [f(x) - g(x)] \, dx \neq 0
\]

Los ejercicios 4-8 representan la aplicación del concepto de área de una región comprendida entre dos curvas.

4. Supongamos que para calcular el área de la región comprendida entre dos curvas se utilizan rectángulos representativos horizontales. Indica cuál es la variable de integración.

Respuesta:
Variable de integración es \(y \).

5. Describe con tus propias palabras como avanzar desde una fórmula previa al cálculo hasta una nueva fórmula de integración, cuando se utiliza la integración para resolver problemas prácticos.

Sugerencia: Contemplar el área de cierta región a través de la suma de áreas de rectángulos como elemento representativo.

Por ejemplo:

<table>
<thead>
<tr>
<th>Fórmula conocida previa al cálculo</th>
<th>Elemento representativo</th>
<th>Nueva fórmula de integración</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = \text{base} \cdot \text{altura})</td>
<td>(\Delta A = [f(x) - g(x)] \Delta x)</td>
<td>(A = \int_a^b [f(x) - g(x)] , dx)</td>
</tr>
</tbody>
</table>
6. Las gráficas de \(y = x^4 - 2x^2 + 1 \) y \(y = 1 - x^2 \) se cruzan en tres puntos. Sin embargo, el área comprendida entre dichas curvas puede calcularse con una sola integral. Explica por qué es así y escribe una integral que corresponda a dicha área.

Respuesta:

\[
\int_{-1}^{1} \left[(1-x^2) - (x^4 - 2x^2 + 1) \right] \, dx = \frac{4}{15}
\]

7. Una persona con título universitario tiene dos ofertas de trabajo. El salario (en dólares) inicial en ambas es de 32,000, y al cabo de 8 años de servicio, en cualquiera de ellas le pagarán 54,000. El aumento de salario en cada oferta de trabajo se muestra en el gráfico 6 de la Sección 2.6. ¿Cuál es la mejor oferta de trabajo desde el punto de vista estrictamente monetario? Explica tu respuesta.

Respuesta:

La oferta 2 es mejor porque el salario acumulativo (área bajo la curva) es mayor.

8. La legislatura de un estado está debatiendo dos propuestas para eliminar el déficit del presupuesto anual en el año 2013. La proporción de disminución del déficit en cada propuesta se muestra en el gráfico 7 de la Sección 2.6. Desde el punto de vista de minimizar el déficit acumulativo del estado, ¿cuál es la mejor propuesta? Explica tu respuesta.

Respuesta:

Representación gráfica de dos propuestas para eliminar el déficit de un estado en el año 2013. El déficit está dado en miles de millones de pesos mexicanos y el tiempo en años.
Respuesta:
La propuesta 2 es mejor porque el déficit acumulativo (área bajo la curva) es menor.

Actividad 16
1. **Fuerza.** La fuerza F (en newtons) de un cilindro hidráulico en una prensa es proporcional al cuadrado de la secante de x (sec(x)), donde x es la distancia (en metros) que el cilindro se expande en su ciclo. El dominio de la función F es $[0, \frac{\pi}{3}]$, y $F(0) = 500$.
 a) Encuentra F en función de x.
 b) Encuentra la fuerza promedio ejercida por la presión sobre el intervalo $[0, \frac{\pi}{3}]$.
 Respuesta:
 $$F(x) = 500s^2x$$
 827 newtons

2. **Flujo sanguíneo.** La velocidad de v del flujo de sangre en la distancia r respecto al eje central de una arteria de radio $< R$ es
 $$v = k(R^2 - r^2)$$
 donde k es la constante de proporcionalidad. Encuentra la velocidad promedio del flujo de sangre a lo largo de un radio de la arteria. Sugerencia: emplea 0 y R como límites de integración.
 Respuesta:
 La velocidad promedio del flujo de sangre a lo largo de un radio de la arteria está dada por:
 $$\frac{1}{R} \int_0^R k(R^2 - r^2) \, dr = \frac{1}{R} \left(kR^2r - \frac{k}{3}r^3\right)_0^R = \frac{2}{3}kR^2$$

3. **Ciclo respiratorio.** El volumen V en litros de aire en los pulmones durante un ciclo respiratorio de 5 segundos se approxima mediante el siguiente modelo matemático
 $$V = 0.1729t + 0.1522t^2 - 0.0374t^3$$
 donde t es el tiempo en segundos. Determina el volumen promedio de aire en los pulmones durante un ciclo de respiración.
 Respuesta:
 Aproximadamente 0.5318 litros.
4. **Promedio de utilidades.** Cierta compañía introduce un nuevo producto y aproxima las utilidades \(P \) en miles de pesos durante los 6 primeros meses mediante el modelo

\[
P = 5(\sqrt{t} + 30), \quad t = 1, 2, 3, 4, 5, 6.
\]

a) Utiliza el modelo para completar la siguiente tabla y utiliza los resultados para calcular de forma aritmética la utilidad promedio en los seis primeros meses.

Respuesta:

<table>
<thead>
<tr>
<th>(t)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>155</td>
<td>157.07</td>
<td>158.66</td>
<td>160</td>
<td>161.18</td>
<td>162.24</td>
</tr>
</tbody>
</table>

b) Encuentra el valor promedio de la función de utilidad por integración y compara los resultados obtenidos con respecto al inciso a). (Sugerencia: integrar sobre el intervalo \([0.5, 6.5]\)).

Respuesta:

\[
\frac{1}{6} \int_{0.5}^{6.5} 5(\sqrt{t} + 30) \, dt = \frac{5}{6} \left(\frac{2}{3} \sqrt{t^3} + 30t \right) \bigg|_{0.5}^{6.5} = \frac{5}{9} \left(\sqrt{t^3} + 25t \right) \bigg|_{0.5}^{6.5} = 171.706 - 12.696 = 159.01
\]

c) ¿Cuál ventaja, si la hay, habrá al emplear la aproximación del promedio dado por la integral definida? (Observa que la aproximación por medio de la integral utiliza todos los valores reales de \(t \) en el intervalo y no solamente valores enteros).

5. **Ventas.** Las ventas de un producto en el mercado están dadas por el siguiente modelo

\[
U = 74.50 + 43.75 \sin \left(\frac{\pi t}{6} \right)
\]

donde \(U \) se mide en miles de unidades por la venta del producto y \(t \) es el tiempo en meses, y \(t = 1 \) corresponde a enero (primer mes). Encuentra el promedio de ventas para los siguientes períodos.

a) El primer trimestre \((0 \leq t \leq 3)\).

b) El segundo trimestre \((3 \leq t \leq 6)\).

c) El segundo semestre \((6 \leq t \leq 12)\).

d) Todo el año.

Respuesta:

102.352 mil unidades

102.352 mil unidades
46.65 mil unidades
74.5 mil unidades

Las ventas de un producto en el mercado están dadas por el siguiente modelo:

\[U(t) = 74.5 + 43.75 \sin \left(\frac{\pi}{6} t \right) \]

donde \(U \) se mide en miles de unidades por la venta del producto y \(t \) es el tiempo en meses, y \(t = 1 \) corresponde a enero (primer mes).

Con base en la ley de enfriamiento descrita por Newton y lo expuesto en el ejemplo 2 de esta sección, resuelve el siguiente problema.

6. Ley de Newton sobre el enfriamiento. Cuando cierto objeto se extrae de un horno y es colocado en un ambiente con temperatura constante de 26° centígrados, su temperatura interna es de 815° C. Si después de una hora de haber sido extraído del horno, la temperatura interna del objeto es de 604° C. Calcula la temperatura interna del objeto después de 5 horas de haber sido extraído de dicho horno.

Respuesta:

De la ley del enfriamiento de Newton, sabemos que la razón de cambio en \(y \) es proporcional a la diferencia entre \(y \) y 26. Esto se puede escribir como

\[\frac{dy}{dt} = k(y - 26) \]

Ecuación diferencial

\[\left(\frac{1}{y - 26} \right) dy = k dt \]

Separando variables

\[\int \frac{1}{y - 26} dy = \int k dt \]

Integrando de ambos lados

\[ln|y - 26| = kt + C_1 \]

Encontrando la antiderivada
Puesto que $y > 26$, entonces $|y - 26| = y - 26$ y se puede omitir los signos de valor absoluto. Usando la notación exponencial, tenemos

$$y - 26 = e^{kt + C_1} \quad \Rightarrow \quad y = 26 + Ce^{kt} \quad \text{con} \quad C = e^{C_1}$$

Para encontrar la constante C, usamos el hecho de que $y = 815$ cuando $t = 0$, y al sustituir en la anterior ecuación

$$815 = 26 + Ce^{k(0)}$$

Lo que implica que $C = 789$. Ahora usamos el hecho de que $y = 604 >$ cuando $t = 60$, y al sustituir de nueva cuenta en la anterior ecuación, obtenemos

$$604 = 26 + 789e^{k(60)}$$
$$578 = 789e^{k(60)}$$

$$k = \frac{1}{60} \ln (0.73257) \approx \frac{1}{60} \ln (0.73257) \approx -0.0051865.$$

Y de esta forma, el modelo matemático del enfriamiento es

$$y = 26 + 789e^{-0.0051865t}$$

Finalmente, deseamos conocer la temperatura y cuando el tiempo $t = 300$, sustituyendo en nuestro modelo tenemos

$$y = 26 + 789e^{-0.0051865(300)}$$

$$y = 192.46 \text{ grados centígrados}.$$

A partir de la ley de Hooke y el trabajo expuesto en el ejemplo 3 de esta sección, resuelve los problemas 7-10.

7. Una fuerza de 5 libras comprime 4 pulgadas en total a un resorte de 15 pulgadas. ¿Cuánto trabajo se realiza al comprimir el resorte 7 pulgadas?

Respuesta:

30.625 libras – pulgadas ≈ 2.55 libras – pie

8. Una fuerza de 250 newtons alarga un resorte en 30 cm. ¿Cuánto trabajo se realiza al alargar el resorte de 20 cm a 50 cm?

Respuesta:

8750 newtons – centímetro ≈ 87.5 newtons – metro

9. Una fuerza de 20 libras alarga un resorte 9 pulgadas en cierta máquina para hacer ejercicio físico. Calcula el trabajo realizado para alargar el resorte 1 pie a partir de su posición natural. (Recuerda que 1 pie equivale a 12 pulgadas).
Respuesta:

160 libras – pulgada ≈ 13.3 libras – pie

10. Una puerta de garage que abre hacia arriba tiene dos resortes, uno a cada lado de la puerta. Se requiere una fuerza de 15 libras para alargar 1 pie cada resorte. Debido al sistema de poleas, los resortes sólo se alargan la mitad de la distancia que recorre la puerta. Calcula el trabajo realizado por el par de resortes, si la puerta se mueve 8 pies en total y los resortes reposan.

Respuesta:

\[W = 2 \int_{0}^{4} f(x) \, dx = 2 \int_{0}^{4} 15x \, dx = 240 \text{ lb – pie}. \]

A partir del trabajo expuesto sobre propulsión en los ejemplos 4 y 5 de esta sección, resuelve los problemas 11-13.

11. Sin considerar la resistencia del aire ni el peso del propulsor, calcula el trabajo realizado al propulsar un satélite de 5 toneladas hasta una altura sobre la superficie de la Tierra de

a) 100 millas
b) 300 millas

Respuesta:

487.805 toneladas – milla ≈ 5.151(10^9) libras – pie

1395.349 toneladas – milla ≈ 1.473 (10^{10}) libras – pie

12. Utiliza la información del ejercicio 11 para escribir el trabajo \(W \) del sistema de propulsión como una función de la altura \(h \) del satélite sobre la Tierra. Calcula el límite (si es que existe) de \(W \) cuando \(h \) se approxima a infinito.

Respuesta:

\[W = \int_{4000}^{b} \frac{80,000,000}{x^2} \, dx = \lim_{b \to \infty} \left[-\frac{80,000,000}{x} \right]_{4000}^{b} = \lim_{b \to \infty} \left[-\frac{80,000,000}{b} + \frac{80,000,000}{4000} \right] = 20,000 \text{ millas – tonelada} \]

13. Respuesta:

\[W = \int_{1100}^{b} f(x) \, dx = \int_{1100}^{1150} \frac{2420000}{x^2} \, dx = 95.652 \text{ toneladas – millas}. \]
Actividad 17

Respuesta:

1. \(A = 23,502.72 \) unidades cuadradas (véase siguiente gráfica).

![Gráfica de la sección transversal de la presa]

2. Método del cascarón

Una opción para hallar el volumen de un sólido de revolución es a través del llamado método del cascarón, como se muestra en la siguiente figura.

![Figura de método del cascarón]

De donde:

\[
V = 2\pi \int_a^b p(x) h(x) \, dx
\]

3. Para determinar el volumen necesario para construir la presa es necesario considerar que el arco de la presa (sección transversal) se gira a través de un arco de 150° y un eje de rotación de 150 pies. Entonces el volumen total es:

\[
V = V_1 + V_2 + V_3
\]
De donde:

\[v_1 = \frac{5}{6} \pi \int_{a}^{b} p(x) h(x) \, dx = \frac{5}{6} \pi \int_{-10}^{-16} (150 + x) (0.03x^2 + 7.1x + 350) \, dx \]

\[v_2 = \frac{5}{6} \pi \int_{a}^{b} p(x) h(x) \, dx = \frac{5}{6} \pi \int_{-16}^{0} (204 + x) (389) \, dx \]

\[v_3 = \frac{5}{6} \pi \int_{a}^{b} p(x) h(x) \, dx = \frac{5}{6} \pi \int_{0}^{59} (220 + x) (-6.593x + 389) \, dx \]

Por lo tanto:

El volumen aproximado de concreto para construir la presa es:

\[V = 1,780,799.54 + 3,193,701.2 + 7,200,515.41 = 12,175,016.15 \text{ pies}^3 \]

\[V \approx 344,758,106.067 \text{ litros} \]

¿Ya estoy preparado(a)?

Límites. Resuelve los siguientes problemas:

1. Responde Verdadero (V) o Falso (F) para cada una de las siguientes afirmaciones. En caso de ser falsa, explica por qué lo es o describe un ejemplo en el que se muestre que la afirmación es falsa.

 Respuestas:

 a) Falso. Sea \(f(x) = \begin{cases} x^2 + 2, & x \neq 1 \\ 1, & x = 1 \end{cases} \), entonces \(\lim_{x \to 1} f(x) = 3 \neq f(1) \)
b) Falso. Sea \(f(x) = \begin{cases} 4 - x, & x \neq 2 \\ 0, & x = 2 \end{cases} \), entonces \(f(2) = 0 \neq \lim_{x \to 2} f(x) = 2 \).

c) Falso: la existencia o no existencia de \(f(x) \) en \(x = c \) no tiene que ver con la existencia del límite de \(f(x) \) a medida que \(x \) tiende al valor \(c \).

d) Falso. El límite no existe porque la función tiende a 1 a partir del lado derecho de 0 y tiende a -1 por la izquierda de 0 (véase la siguiente gráfica).

e) Verdadero.

f) Falso. El límite no existe porque la función tiende a 3 por la izquierda de 2 y tiende a 0 por la derecha de 2 (véase la siguiente gráfica).

g) Falso. Sea \(f(x) = \frac{1}{x} \), entonces el límite de \(f(x) \) cuando \(x \) tiende a 0 no existe, es decir, existe una asíntota vertical de \(f \) en \(x = 0 \), (véase la siguiente gráfica).
h) Verdadero.

i) Verdadero.

2. Un gas es mantenido a temperatura constante dentro de un cilindro. Cuando este gas es comprimido su volumen \(V \) disminuye, hasta que se llega a una presión \(P \) crítica. Al rebasar esta presión el gas se convierte en un líquido. Utiliza la gráfica que se muestra a continuación para calcular e interpretar los límites siguientes:

a) \(\lim_{P \to 100^-} V \)

b) \(\lim_{P \to 100^+} V \)

Respuesta:

a) 0.8 (estado gaseoso)

b) 0.3 (estado líquido)

Razón de cambio: Resuelve los siguientes problemas:

3. La temperatura en la ciudad de Puebla, México, durante la noche del 12 de Enero se muestra en la siguiente tabla:

Respuesta:

a) \(T_{prom} = \frac{-1.8 - (-1)}{2} = -0.4 \)
b) \(T_{prom} = \frac{-5.8 - (-2.6)}{4} = -0.8 \)

c) La razón de cambio en la temperatura es constante en los intervalos de tiempo de cada hora.

d) \(T(x) = -0.8x - 1 \), donde \(x \) representa el tiempo en horas y \(T(x) \) la temperatura en grados centígrados.

e) Gráfica \(t(x) \)

f) \(T(3.5) = -0.8(3.5) - 1 = -3.8 \) grados centígrados.

4. Se lanza una pelota hacia arriba con una velocidad de 120 m/s. Su altura en metros después de \(t \) segundos se expresa con \(A(t) = 120t - 4.9t^2 \).

Respuesta:

a) \(V_{prom} = \frac{401.6 - (115.1)}{3} = 95.5 \frac{m}{s} \)

b) \(V_{prom} = \frac{734.4 - (477.5)}{7} = 36.7 \frac{m}{s} \)

c) En el intervalo descrito en el inciso b), de 5 a 12 segundos. Esto se debe a que el objeto se va frenando conforme transcurre el tiempo debido a la fuerza de gravedad.

d) \(V_{prom} = \frac{440 - (719.6)}{6} = -46.6 \frac{m}{s} \). El valor de la velocidad promedio es negativo debido a que la pelota describe una trayectoria de arriba hacia abajo en el intervalo de 14 a 20 segundos.

e) 24.49 segundos.
5. Una población de moscas crece dentro de un gran recipiente, de modo que el número de moscas P (en cientos) a las t semanas está dado por $P(t) = 36t^3 - t^4 + 5$.

Respuesta:

a) $C_{prom} = \frac{2053 - (5)}{4} = 512$

b) $C_{prom} = \frac{6485 - (3880)}{1} = 2605$

c) $C_{instantáneo} = P'(t) = -4t^3 + 108t^2$; entonces $P'(4.5) = -4(4.5)^3 + 108(4.5)^2 = 1,822.5$

d) $C_{instantáneo} = P'(t) = -4t^3 + 108t^2$; entonces $P'(6) = -4(6)^3 + 108(6)^2 = 3,024$

e) Gráfica de la función $P(t)$.
6. Un globo esférico se infla y su radio (en centímetros) a los \(t \) minutos puede calcularse mediante la función: \(r(t) = \frac{2t}{3} \) para \(0 \leq t \leq 10 \).

Respuesta:

a) Como \(\nu(r) = \frac{4}{3} \pi r^3 \), entonces

\[\nu(t) = \frac{2^5}{3^3} \pi t^3 \]

b) \(r'(t) = \frac{2}{3} \)

c) \(r'(t) = \frac{2}{3} \)

d) \(\nu'(r) = 4 \pi r^2 \); como \(r(7) = \frac{14}{3} \), entonces \(\nu' \approx 273.6 \) es el resultado buscado.

e) \(\nu'(6) = \frac{2^5}{3^3} \pi (6)^2 \approx 134 \)

7. Un cohete que se tiene emplazado al pie de una colina, cuya pendiente es \(1/5 \), se dispara hacia la loma y sigue una trayectoria dada por

\[y(x) = 1.6x - 0.016x^2 \]

Respuesta:

a) Como \(y'(x) = -0.032x + 1.6 \); entonces 1.6 es la pendiente buscada.

b) \(y'(87.5) = -0.032(87.5) + 1.6 = -1.2 \) es la pendiente buscada.

c) \(-1.2 \) es la velocidad buscada.

d) 40 unidades son la superficie.

e) Gráfica
Máximos y mínimos: Resuelve los siguientes problemas:
8. Se quiere construir un bote cilíndrico con un volumen de 1 litro (1000cm3).
 Respuesta:
 a) Sea
 \[A(r,h) = 2\pi r^2 + 2\pi rh \]
 \[V(r,h) = \pi r^2 h, \]
 de donde
 \[h = \frac{1000}{\pi r^2}, \]
 \[A(r) = 2\pi r^2 + \frac{2000}{r} \]
 b) \(r = 5.42 \text{ cm} \) y \(h = 10.83 \text{ cm} \) son las dimensiones que minimizan la cantidad de material a utilizar en el bote cilíndrico.
 c) Gráfica

9. Si un proyectil es lanzado verticalmente hacia arriba (sin considerar la resistencia del aire), desde una altura inicial de 68.6 m y con velocidad inicial de 352.8 m/s.
Respuesta:

a) \[d(t) = -4.9t^2 + 352.8t + 68.6 \]

b) \[v(t) = -9.8t + 352.8 \]

c) \[v(3) = -9.8(3) + 352.8 = 323.4 \text{ m/s} \] para \(t = 3 \) segundos, y \[v(7) = -9.8(7) + 352.8 = 323.4 \text{ m/s} \] para \(t = 7 \) segundos.

d) \[v(72.19) = -9.8(72.19) + 352.8 = -354.662 \text{ m/s} \]

e) 6419 metros

f) \[v(36) = 0 \text{ m/s}, \] ya que el proyectil alcanza su altura máxima y comienza el descenso.

g) Gráfica

10. Durante el periodo de 1950 a 1970, el Producto Interno Bruto (PNB) de cierto país se encontraba dado por la fórmula \[p(x) = 5 + 0.1x + 0.01x^2 \] en miles de millones de dólares (aquí la variable \(x \) se utiliza para medir los años, para \(x = 0 \) corresponde al año 1950 y para \(x = 20 \) al año 1970). Determina las tasas de crecimiento instantáneas del PNB en \(x = 1950 \), \(x = 1960 \) y \(x = 1970 \).

Respuesta:

Para el año 1950, la tasa de crecimiento instantánea es:

\[p'(0) = 0.02(0) + 0.1 = 0.1 \]

Para el año 1960, la tasa de crecimiento instantánea es:

\[p'(10) = 0.02(10) + 0.1 = 0.3 \]
Para el año 1970, la tasa de crecimiento instantánea es:
\[p'(20) = 0.02(20) + 0.1 = 0.5 \]

Aplicaciones

11. La temperatura en la Ciudad de México durante dos días de primavera está dada por la función \(T(t) = -10 \sin(\pi t / 12) + 15 \) con \(t \) medido en horas y la temperatura \(T \) medida en grados Celsius.

Respuesta:

12. Un carrito se encuentra unido a la pared, por medio de un resorte. El resorte se comprime hasta una distancia de 20 centímetros de la posición de equilibrio \(x = 0 \), y en el instante \(t = 0 \) se suelta. En una situación ideal (sin fricción) el carrito oscilará entre las posiciones \(x = -20 \) y \(x = 20 \). El carrito tarda 8 segundos en regresar a su posición inicial.

Respuesta:
Segunda Parte

Cálculo Integral. Resuelve los siguientes problemas:

1. Una partícula se mueve a lo largo de una recta, de modo que su velocidad es $v(t)=t^2-t+6$, donde t es el tiempo medido en segundos y la velocidad está medida en metros por segundo.

Respuesta:

a) $d(t) = \int_a^3 v(t) \, dt = \left(\frac{1}{3} t^3 - \frac{1}{2} t^2 + 6t\right)_1^3 = 16.67$

b) Gráfica

2. Una partícula se mueve a lo largo de una recta de modo que su aceleración es $a(t)=t+5$ y su velocidad inicial es $v(0)=4$, con t medido en segundos y la velocidad medida en metros por segundo.

Respuesta:

a) $v(t) = \int a(t) \, dt = \int (t+5) \, dt = \frac{1}{2} t^2 + 5t + C$

como $v(0)=C=4$, entonces

$v(t) = \frac{1}{2} t^2 + 5t + 4$
b) Gráfica

3. Se lanza una pelota de béisbol hacia arriba, sin resistencia del aire, desde una altura de 2 metros y con una velocidad de 10 metros por segundo.

Respuesta:

a) 7.1 metros

b) \(v_0 = 9.8t = 9.8(6.35) = 62.23 \frac{m}{s} \)

Gráfica

En diversos fenómenos naturales y procesos sociales, como la dinámica poblacional estudiada en la Sección 2.1 o la ley de enfriamiento de Newton tratada en la Sección 2.3.2 y 2.7, se hace uso del cálculo a partir del modelo matemático que describe la razón de cambio de la variable involucrada en relación proporcional con el valor de dicha variable. Esto es, si la variable \(y \) es una función que depende del tiempo, \(t \), en la situación o problema a tratar, entonces la relación de proporcionalidad puede escribirse como sigue:

\[
\frac{dy}{dt} = ky
\]
Apéndice 1

donde k es la constante de proporcionalidad y la ecuación diferencial representa el modelo de crecimiento y decrecimiento en distintos fenómenos naturales y procesos sociales de estudio.

I) Demuestra el siguiente resultado:

Teorema: Crecimiento exponencial y modelo de decrecimiento.

Respuesta:
A partir de la ecuación diferencial, se tiene

\[
\frac{y'}{y} = k
\]

\[
\int \frac{y'}{y} \, dt = \int k \, dt
\]

\[
\int \frac{1}{y} \, dy = \int k \, dt
\]

\[
\ln y = kt + C_1
\]

\[
y = e^{C_1}e^{kt}
\]

\[
y = Ce^{kt}
\]

Por lo tanto, las soluciones de $y' = ky$ tienen la forma $y = Ce^{kt}$

II) Desintegración radioactiva.

Respuesta:

a) 80,923 años aproximadamente.

b) 95.81%

c) Tabla completa:

<table>
<thead>
<tr>
<th>Isótopo</th>
<th>Vida media (en años)</th>
<th>Cantidad inicial (en gramos)</th>
<th>Cantidad después de 1000 años</th>
<th>Cantidad después de 10,000 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra-226</td>
<td>1,620</td>
<td>10 g</td>
<td>6.52g</td>
<td>0.14g</td>
</tr>
<tr>
<td>Ra-226</td>
<td>1,620</td>
<td>36.07g</td>
<td>23.65g</td>
<td>0.5g</td>
</tr>
<tr>
<td>C-14</td>
<td>5,730</td>
<td>5g</td>
<td>4.43g</td>
<td>1.49g</td>
</tr>
<tr>
<td>Pu-139</td>
<td>24,360</td>
<td>2.16g</td>
<td>2.1g</td>
<td>1.63g</td>
</tr>
</tbody>
</table>
III. Crecimiento de la población.
Respuesta:
a) 33 moscas se tienen al tiempo $t = 0$ (población original).
b) Gráfico:

IV) Disminución de ventas.
Respuesta:
a) Las ventas descenderán a 71,500 unidades aproximadamente.
b) Gráfica:

V) Intensidad de un terremoto.
Respuesta:
a) $10^{8.3} \approx 199,526,231.5$
b) $10^{8.1} \approx 125,892,541.2$
c) 10^R
d) $\frac{dR}{dT} = \frac{1}{T \ln 10}$
VI) Aumento de peso.

Respuesta:

a) Gráfica de \(w = 1200 - 1140e^{-0.8t} \)

b) Gráfica de \(w = 1200 - 1140e^{-0.9t} \)

c) Gráfica de \(w = 1200 - 1140e^{-t} \)

b) El tiempo de venta es 1.31 años para \(k = 0.8 \).
El tiempo de venta es 1.16 años para \(k = 0.9 \).
El tiempo de venta es 1.05 años para \(k = 1 \).

c) 1,200 libras.
Apéndice 2
La consulta de fuentes de información en Internet

La información es un punto nodal para la sociedad de hoy. Diferenciarla, manejarla y utilizarla son acciones básicas para nosotros los miembros de la sociedad del siglo XXI y por ello hay que acercarse a ella. Saber qué hacer es el primer paso.

La información se define como el conjunto de datos sobre algún fenómeno determinado; se obtiene de diversas formas, como la observación o la búsqueda intencionada. En el primer caso es natural pero en el segundo no. Para aprender se utilizan las dos pero para estudiar se usa principalmente la segunda.

La información se obtiene de fuentes primarias y secundarias, escritas, orales y visuales, mediante medios impresos, electrónicos y personales. El conjunto de datos por obtener es tan amplio que después de obtenidos se deben analizar, pues no todo lo percibido o encontrado es certero y confiable y tampoco responde de manera puntual al objeto de estudio.

En estos días es común el acceso a la información a través de Internet o red global de información a la que se llega y se mantiene por medio de computadoras. Son millones y millones de datos, documentos, imágenes, fotografías lo que se almacena y a lo que uno tiene acceso. Por eso, diferenciar entre una buena información y la información basura es difícil. Los siguientes son algunos consejos o recomendaciones para guiar tu búsqueda.

1. Para distinguir el valor de la información para ti debes planear el objetivo antes de comenzar a buscar. Los siguientes criterios de búsqueda pueden ayudarte: ¿qué voy a buscar?, ¿qué quiero saber de lo que voy a buscar?, ¿para qué lo estoy buscando?

2. Es muy importante que no busques saber TODO de un tema. Entre más específica sea tu búsqueda, mayor oportunidad tienes de encontrar rápida y fácilmente la información. Puedes caer en dos errores:
 a) Especificar demasiado las cosas.
 b) Dejar sin especificar las cosas.

3. Define qué sabes. Para comenzar a investigar hay que partir de tus conocimientos previos. Lo que ya conoces te servirá para realizar tu investigación y para diferenciar datos correctos de los incorrectos, los útiles de los inútiles.
 a) Asegúrate que la información que tú conoces previamente es correcta.
 b) Asegúrate que la información que es actual.
 c) Recuerda que, aunque no sepas del tema, sí sabes cómo comenzar a buscarlo.

4. Decide dónde y cómo vas a buscar.

6. Planea la búsqueda de acuerdo a tu nivel de conocimientos: vas a investigar algo muy básico o más avanzado. Los mejores lugares para comenzar a informarte son diccionarios, enciclopedias, las lecturas sugeridas en los libros de texto, las páginas de Internet “oficiales” (aquellas del gobierno, de las organizaciones importantes (como la ONU, la UNICEF), páginas de universidades de prestigio (como la UNAM, el IPN) Estas páginas “oficiales” tienen CONTROL sobre sus contenidos por lo que la información encontrada, aunque puede ser subjetiva (que depende de un punto de vista), es la “oficialmente correcta”.

Es muy importante que pongas MUCHA ATENCIÓN en tus primeras lecturas. Debes encontrar información correcta. Para ello es necesario que compares los datos obtenidos entre sí.

7. Busca y consulta la información utilizando un buscador (el que te va a encontrar dónde, de todo el Internet, está tu tema).

Algunos buscadores son:
- mx.yahoo.com
- www.google.com.mx
- mx.altavista.com

Si quieres noticias probablemente las encuentres en:
- www.bbc.co.uk/mundo/index.shtml
- mx.reuters.com
- mx.news.yahoo.com

Si buscas libros los puedes encontrar (además de en una librería) en:
- books.google.es
- www.booksfactory.com/indice.html
- www.ucm.es/BUCM/atencion/25403.php

Si lo que deseas son diccionarios:
- rae.es/rae.html
- www.diccionarios.com
- www.elmundo.es/diccionarios

¿Qué opciones del buscador me conviene utilizar?
Los buscadores presentan algunas opciones tales como:
- Dentro de “búsqueda avanzada” podrás elegir cómo preferirías que te ayudara a buscar. Utilizando las opciones de: “buscar con las palabras” y “que no contenga las palabras” puedes hacer tu búsqueda aún más pequeña y te será más fácil encontrar lo que quieres.
8. Una vez obtenida la información: analiza. Los puntos más importantes ahora son: ¿es lo que necesito?, ¿qué tan bueno es el contenido?, ¿qué tan confiable es el autor?, ¿cuáles son algunos lugares de donde viene la información?

Las nociones matemáticas y el infinito

Ya los antiguos griegos se habían preocupado del tratamiento de ese ente tan curioso —como difícil— que es el infinito. Para los griegos de la antigüedad, el infinito aparece de dos maneras distintas: lo infinitamente pequeño y lo infinitamente grande. Esto se vislumbra, de algún modo, en la incommensurabilidad de la diagonal del cuadrado; así como también, en la famosa paradoja de Zenón de Elea (490 a.C. - 430 a.C.) sobre Aquiles y la tortuga.

No es de extrañar que en este punto de la historia, alguien intentara abordar el problema del infinito. Ese alguien fue Aristóteles (384 a.C. - 322 a.C.), quién enfrentó el problema del infinito a través de dos representaciones o concepciones complementarias y cuya interacción dialéctica ha influido el propio desarrollo de la matemática. En el tercer libro de su obra denominada Física, Aristóteles distingue dos tipos de infinito; el infinito como un proceso de crecimiento sin final o de subdivisión sin final y el infinito como una totalidad completa. El primero es el infinito potencial y el segundo el infinito actual. La noción de infinito potencial se centra en la operación reiterativa e ilimitada, es decir, en la recursividad interminable. Por muy grande que sea un número natural siempre podemos concebir uno mayor y uno mayor que este último y así sucesivamente, donde esta última expresión encierra la misma idea de reiteración ilimitada, al infinito. Para Aristóteles este tipo de infinito potencial existe y es el que sirve de base a la noción de límite del cálculo infinitesimal. Por su parte, Aristóteles prohíbe el infinito como una totalidad completa, afirmando que no es posible que el infinito exista como ser en acto o como una substancia y un principio, sin embargo, esta noción de infinito como totalidad fue ampliamente desarrollada en la geometría analítica al dividir un segmento de recta en un número infinito de puntos y el infinito actual de los infinitesimales sirvió de soporte heurístico para la posterior formalización del cálculo infinitesimal.

Fue Eudoxo de Cnidos (390 a.C. - 337 a.C.), discípulo de Platón y contemporáneo de Aristóteles, quien hizo el primer uso racional del infinito en las matemáticas. Postuló que toda magnitud finita puede ser agotada mediante la substracción de una cantidad determinada, se trata del famoso principio de Arquímedes que éste toma prestado a Eudoxo.

No obstante, Arquímedes es considerado el precursor del cálculo integral a través de su método mecánico y actualmente llamado método de agotamiento. De hecho este método, donde además se saltaba la prohibición aristotélica de usar el infinito in acto, se perdió hasta descubrirse en 1906. La genial idea del siracusano fue considerar las áreas como una colección —necesariamente infinita— de segmentos rectos y que trataremos a detalle en la sección 2.3 de este libro.

La necesidad de entender obras griegas difíciles, como las de Arquímedes, tuvo una gran influencia en el nacimiento del cálculo infinitesimal, ya que en el siglo XVII de nuestra era se habían recuperado y se conocían a la perfección la ma-
yoría de las obras griegas antiguas. También ayudó al surgimiento del cálculo el cambio de actitud en la matemática que se dio en el siglo XVII, la cual estuvo influída también por grandes descubrimientos de todo tipo: geográficos, científicos, médicos y tecnológicos; además es importante señalar que el interés de los matemáticos del siglo XVII era más por descubrir que por dar pruebas rigurosas. Todo esto fomentó, sin duda, el uso del infinito sin las limitaciones aristotélicas y por ende propició el nacimiento de la geometría analítica, a principios del siglo XVII, misma que iniciaron René Descartes (1596-1650) y Pierre Fermat (1601-1665) con sus obras. La importancia de este descubrimiento consiste en que la geometría analítica permite el tratamiento algebraico de problemas geométricos, al asignar a las curvas, superficies, etcétera, fórmulas algebraicas que las describen y permiten su manipulación de forma analítica.

Otra contribución importante se debe a Bonaventura Cavalieri (1598-1647), discípulo de Galileo Galilei. Lo que hace Cavalieri es considerar áreas formadas por segmentos y volúmenes formados por trozos de áreas planas redescubriendo las bases metodológicas del método de agotamiento —desconocido en aquella época— de Arquímedes. Cavalieri (véase la figura 2) fue el primero en introducir en Italia el cálculo logarítmico, pero debe su celebridad a su teoría de los indivisibles, que expuso en su obra denominada *Geometría indivisibilibus continuorum quaedam nova ratione promota* (1635). Esta teoría estudia las magnitudes geométricas descompuestas en un número infinito de elementos, o indivisibles, que son los últimos términos de la descomposición que se puede hacer. La medida de las longitudes, de las superficies y de los volúmenes se traduce así en la suma de una infinitud de indivisibles: es el principio del cálculo de la integral definida, aunque sin la noción rigurosa moderna del límite. Otro de los protagonistas importantes de la historia del cálculo es, sin duda, Grégoire de Saint-Vicent (1584-1667), jesuita matemático y geómetra discípulo de Clavius. Sus principales aportaciones las publicó en su obra llamada *Opus geometricum*. En ella desarrolla un método de integración geométrico, estudia las series geométricas incluyendo diversas aplicaciones de las mismas, analizando la conocida aporía de Zenón sobre Aquiles y la tortuga, que además resolvió magistralmente argumentando que Zenón no consideró en la persecución de Aquiles que el tiempo formaba una progresión geométrica de razón 1/2 y, por tanto Aquiles tardaba un tiempo finito en alcanzar a la tortuga. Una de las aportaciones más valiosas de Saint-Vicent consistió en su hallazgo de que el área encerrada bajo una hipérbola se expresaba mediante logaritmos.

Nuestro próximo personaje es John Wallis (1616-1703), miembro fundador de la Royal Society de Londres y editor de obras de Arquímedes. Wallis (véase la figura 2) trabajó con la aritmética los indivisibles de Cavalieri asignándoles valores numéricos y convirtiendo de esta forma el cálculo de áreas —hasta el momento algo meramente geométrico— en cálculos aritméticos más un primitivo proceso de límite donde hace uso del infinito. A Wallis le debemos también el símbolo del infinito que usamos actualmente, el famoso 8 acostado.
Fuentes consultadas

Kline, Morris, El pensamiento matemático de la antigüedad a nuestros días. V. 2. s e, Madrid, Alianza, 1994
Créditos

Unidad 1

Página 22
Collage entrada de la unidad
Mujeres participativas
© M. Córdova/© Edere
Participación social
© M. Córdova/© Edere

Tsunami
Wikipedia. La enciclopedia libre.
Wikimedia Commons.
Autor: David Rydevik (email: david.rydevik at gmail dot com), Stockholm, Sweden.

Valdivia tras el terremoto de 1960
Wikipedia. La enciclopedia libre.
Wikimedia Commons.
Autor: Fotógrafo: Pierre St. Amand

Página 25
Issac Newton
Tomada de: http://freehighresolutionpictures.blogspot.mx/2011_02_01_archive.html

Página 32
Galileo Galilei
Wikipedia. La enciclopedia libre.
Wikimedia Commons.
Disponible en: http://commons.wikimedia.org/wiki/File:Galileo.jpg

Página 40
Gottfried Leibniz

Página 41
Augusto Cauchy
Wikipedia. La enciclopedia libre.
Wikimedia Commons.

Página 44
Pierre Simon Laplace
Wikipedia. La enciclopedia libre.
Wikimedia Commons.
Disponible en: http://commons.wikimedia.org/wiki/File:Pierre-Simon,_marquis_de_Laplace_(1745-1827)_-_Gu%C3%A9rin.jpg
Página 55
Leonhard Euler
Wikipedia. La enciclopedia libre.
Wikimedia Commons.
Disponible en: http://commons.wikimedia.org/wiki/File:Leonhard_Euler.jpg

Unidad 2
Página 109
Collage entrada de la unidad
Saliendo de evento social
© M. Córdova/ © Edere
En el metro
© M. Córdova/ © Edere
En la estación de autobús
© M. Córdova/ © Edere
Revin Meuse weir
Wikipedia. La enciclopedia libre.
Wikimedia Commons.
Autor: Karel Roose

Página 118 (1)
Arquímedes de Siracusa en medalla Fields
Tomada de: http://gaussianos.com/el-retrato-mas-singular-de-arquimedes/

Página 118 (2)
Bonaventura Cavalieri
Wikipedia. La enciclopedia libre.
Wikimedia Commons.
Monumento al matemático
Autor: Giovanni.Dallorto

Página 118 2b
John Wallis
Wikipedia. La enciclopedia libre.
Wikimedia Commons.
Autor: Sir Godfrey Kneller, Bt.
http://commons.wikimedia.org/wiki/File:John_Wallis_by_Sir_Godfrey_Kneller,_Bt.jpg

Página 118 (3)
Isaac Newton
Wikipedia. La enciclopedia libre.
Wikimedia Commons
Autor: Sir Godfrey Kneller, Bt.
Disponible en: http://commons.wikimedia.org/wiki/File:Sir_Isaac_Newton_by_Sir_Godfrey_Kneller,_Bt.jpg

Página 119
Gottfried Wilhelm von Leibniz
Wikipedia. La enciclopedia libre-Wikimedia Commons
Artista: Christoph Bernhard Francke
Disponible en: http://commons.wikimedia.org/wiki/File:Gottfried_Wilhelm_von_Leibniz.jpg

Página 130
Motor rotatorio Wankel

Página 168
Emile de Breteuil
Wikipedia. La enciclopedia libre-Wikimedia Commons.
Disponible en: http://commons.wikimedia.org/wiki/File:Emilie_du_Ch%C3%A2telet.jpg

Página 172
Propulsar módulo espacial
© O. Villanueva/ © Edere

Página 173
Módulo espacial
© O. Villanueva/ © Edere

Página 178 (1)
Sección transversal de una presa
© O. Villanueva/ © Edere